Novel Evidences of Extracorporeal Shockwave Therapy for Spasticity

Suputtitada A

Physiatrist, Department of Rehabilitation Medicine, Faculty of Medicine, Chulalongkorn University & King Chulalongkorn Memorial Hospital, Bangkok, Thailand

Corresponding author: Suputtitada A, Professor, Physiatrist, Department of Rehabilitation Medicine, Faculty of Medicine, Chulalongkorn University & King Chulalongkorn Memorial Hospital, Bangkok, Thailand, Tel: 66814888549, E-mail: sareerat1111@gmail.com; areerat.su@chula.ac.th; prof.areerat@gmail.com

Abstract
Spasticity is defined as a disorder of sensorimotor control, resulting from an upper motor neuron (UMN) lesion, presenting as intermittent or sustained involuntary activation of muscles. It is characterized by increased involuntary velocity-dependent tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyper-excitability of the stretch reflex. In the recent years, a range of non-pharmacological interventions has been used to manage spasticity. Among the novel of all therapies, extracorporeal shock wave therapy (ESWT) is attractive for many researchers since the noninvasive, easy application after well training and safety property. Moreover, the evidences of regeneration of musculoskeletal tissues made ESWT more interesting than other novel therapies. This article will show the evidences, practical clinical use and precaution to guide treating for the clinicians in the novel therapy of ESWT for spasticity. The review of the scientific evidences including methodology components and main results of ESWT treatment on upper limb and lower limb muscles affected by post-stroke spasticity are demonstrated. However, reducing spasticity alone without addressing the negative components of the upper motor neuron syndrome will limit meaningful recovery. A combination of rehabilitation techniques is needed to facilitate functional improvements.

Keywords: Spasticity, Extracorporeal Shock Wave Therapy (ESWT), Rehabilitation

Introduction
Spasticity is defined as a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyper excitability of the stretch reflex, as one component of the upper motor neuron syndrome [1]. It can be associated with a variety of signs and symptoms of the upper motor neuron syndrome. These symptoms include the neural components and the biomechanical components. The neural components consist of positive phenomena as clonus, dystonia (involuntary muscle contraction resulting in abnormal posturing of a joint or limb), extensor or flexor spasms, spastic co-contraction (contraction of both the agonist and antagonist muscles caused by an abnormal pattern of commands in the descending supraspinal pathway), abnormal reflex responses (exaggerated deep tendon reflexes and associated reaction), and negative phenomena as the loss of dexterity, muscle fatigue, weakness, and loss of limb control. The biomechanical components consist of stiffness, contracture, fibrosis, and atrophy [2-7]. Many disease conditions of the central nervous system, including stroke, cerebral palsy, traumatic brain injury, multiple sclerosis, and spinal cord injury, can provoke spasticity.

Pathophysiology, spasticity results from an abnormal intraspinal processing of primary afferent inputs due to the dissociation of the motor and sensory components of the diastaltic arch [8]. This dissociation is caused by lesions in the brainstem, the cerebral cortex (in the primary, secondary, and supplementary motor areas) or the spinal cord (pyramidal tract), which leads to an inhibitory/excitatory imbalance in the spinal network with a consequent segmental hyperexcitability, including increased muscle activity and exaggerated spinal reflex responses to a peripheral stimulation [9-16]. Furthermore, multiple sclerosis induced spasticity is believed to be due to the occurrence of either axonal degeneration or demyelination within the specific descending tracts in the central nervous system. The inhibitory/excitatory imbalance results from damage-induced dysfunction and maladaptive connectivity among several brain structures such as the supplementary motor, cingulate motor, premotor, posterior and inferior parietal areas, and the cerebellum [9]. The spasticity treatments available can be categorized as pharmacological and nonpharmacological treatments. The pharmacological treatment includes oral (eg, baclofen, tizanidine, benzodiazepine, etc) and injectable (eg, botulinum toxins, alcohol and phenol). In recent years, a range of non-pharmacological interventions has been used...
to manage spasticity, include: physical interventions (stretching, passive movements); transcutaneous electric nerve stimulation (TENS); transcranial direct current stimulation (tDCS); extracorporeal shock wave therapy (ESWT); vibratory stimulation (whole body vibration); electromyography biofeedback; repetitive transcranial magnetic stimulation (TMS); therapeutic ultrasound; acupuncture; orthotics (splints, casts), thermotherapy, cryotherapy and others. In practice, these categories can be implemented in a neurorehabilitation program, either as a stand-alone therapy or in a combination of 2 or more treatment modalities. Among the novel of all therapies, extracorporeal shock wave therapy (ESWT) is attractive for many researchers since the noninvasive, easy application after well training and safety property. Moreover, the evidences of regeneration of musculoskeletal tissues made ESWT more interesting than other novel therapies. However, reducing spasticity alone without addressing the negative components of the upper motor neuron syndrome will limit meaningful recovery. A combination of rehabilitation techniques is needed to facilitate functional improvements.

What is extracorporeal shockwave therapy (ESWT)

ESWT uses biphasic acoustic energy that goes from positive high peak pressures (10-100 MPa (mega pascals) for fESWT; 0.1-1 MPa for rESWT) to negative phase (10 MPa); short rise times (10-100 μs for F-ESWT; 0.5-1 μs for rESWT), short duration (0.2-0.5 μs for fESWT; 0.2-0.5 μs for rESWT). Focused and radial shockwaves are generated in different ways. Focused shockwaves are generated electrically, either within the applicator (electrohydraulic technique), or externally to it in the focal zone (electromagnetic or piezoelectric techniques), and then propagate to a designated focal point in order to treat it. rESWT are ballistic pressure waves generated at lower pressures over a longer time and propagate divergently within the tissue [17-23]. The induced energy is propagating in the tissue and converges into a focal or radial area, depending on the equipment used and the settings selected for intensity, angle and other parameters [17]. The energy of fESWT decreased within the target tissue consists of bone, calcifications, water, etc., more than 50% in occasionally, whereas consistent energy flux density was found in Reswt [17-39].

The current status of knowledge about ESWT from can be shortly summarized as follows: (i) ESWT is effective. (ii) ESWT is safe. (iii) For certain conditions such as plantar fasciopathy or calcifying tendonitis of the shoulder, randomized controlled trials (RCTs) on ESWT have become the predominant type of RCT listed in the highly prestigious Physiotherapy Evidence Evidence Database (PEDro®; www.pedro.org.au), and/or obtained the highest PEDro quality scores among all investigated treatment modalities. (iv) among those RCTs listed in the PEDro database, there is no difference in the “quality” of RCTs with positive or negative outcome. (v) Application of local anesthesia adversely affects outcome of ESWT. (vi) Application of insufficient energy adversely affects outcome of ESWT. (vii) There is no scientific evidence in favor of either rESWT or fESWT with respect to treatment outcome. (viii) The frequently used distinction between rESWT as “low-energy ESWT” and fESWT as “high-energy ESWT” is not correct and should be abandoned. (ix) ESWT has become an attractive alternative for treating newly diagnosed tendinopathies and myofascial pain syndrome. (x) An optimum treatment protocol for ESWT appears to be three treatment sessions at one-week intervals, with 2000 impulses per session and the highest energy flux density that can be applied [17-39].

The advantage for treatment with ESWT are as the follows: (1) relieves pain in more than 80 percent of patients even after just three treatments, (2) can replace surgery in many cases of diseases of the musculoskeletal system, (3) requires compliance by the patient that can easily be achieved (three times five to ten minutes treatment, usually once a week), (4) can be fully performed on an outpatient basis, (5) can be combined with other PRM treatments, (6) No medication, and (7) Gentle and effective.

Potential biological and neuronal mechanisms of ESWT

The mechanism of shock wave therapy on spastic muscles is still unclear and require further investigation. There are studies investigated the mechanisms of the shock waves as the following hypotheses follows; (1) can induce non-enzymatic and enzymatic nitric oxide (NO) synthesis [40-43]. NO is involved in neuromuscular junction formation in the peripheral nervous system 44 and in important physiological functions of the CNS, including neurotransmission, memory and synaptic plasticity [45]. NO synthesis has been suggested as an important mechanism to explain the effectiveness of shock waves in the anti-inflammatory treatment of different tendon diseases [41-43]. However, the reduction in hypertonia in patients after stroke after shock wave therapy is not produced by denervation or lesion of the peripheral nerve, as shown by neurophysiological findings in a previous study [46]. (2) A direct effect of shock waves on fibrosis and on the rheological properties of the chronic hypertonic muscles should be considered together with the documented therapeutic effect on bone and tendon diseases [47-53]; (3) possible tixotrophy effects of shock waves on tissues and vessels of the treated muscles [41,42]; (4) The effect of mechanical stimuli of shock waves on the muscle fibers next to the tendon cannot be excluded; (5) pain itself may be contributing to increased muscle tone. Therefore, treating the pain may reduce muscle tone [54,55]. (6) the effect of ESWT on muscle fibrosis and non-reflex hypertonia. The reduced extensibility, due to soft tissue changes, causes pulling forces to be transmitted more readily to the muscle spindles. In this condition, an exaggerated spindle discharge in response to muscle stretch might lead to an increased stretch reflex. Thus, the reduction of non-reflex hypertonia could modify muscle spindles’ excitability, leading to a secondary reduction of spasticity [46,56]; (7) a neuroregenerative properties of the ESWT characterized by strong growth in the rate of axonal regeneration, connected with the removal of degenerated axons initially and obtaining a greater capacity for the creation of new axons as a result of partial destructive impact of ESWT [57]; (8) low-energy ESWT enhances the neuroprotective effect in reducing secondary injury and leads to better...
Evidences from the searched articles

Review of the scientific evidences including methodology components and main results of ESWT treatment on upper limb and lower limb muscles affected by post-stroke spasticity are as in the Table 1 and Table 2, respectively.

<table>
<thead>
<tr>
<th>Santamato et al. [62]</th>
<th>Daleri et al. [63]</th>
<th>Manganotti et al. [64]</th>
<th>Troncati et al. [65]</th>
<th>Li TY et al [66]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence level</td>
<td>Randomized Critical Trial, Double blinded</td>
<td>Clinical Controlled Trial, Single blinded</td>
<td>Clinical Controlled Trial, Single blinded</td>
<td>Clinical Case Report</td>
</tr>
<tr>
<td>Included patients (n)</td>
<td>32</td>
<td>15</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Patients in the ESW and control group (n)</td>
<td>16,16</td>
<td>15</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Mean age in ESWT and control group</td>
<td>64.4±6.09 yrs 63.1±07.03 yrs</td>
<td>54.4±9.4 yrs 63.0 (38 ±76) yrs</td>
<td>68.0 (34 ± 86) yrs</td>
<td>Group A: 55.35±3.05 (33–74)</td>
</tr>
<tr>
<td>Gender in the ESW and control group</td>
<td>9 F/7 M 10 F/6 M</td>
<td>3 F/12 M 9 F/11 M</td>
<td>1 F/11 M 10 F/6 M</td>
<td>Group A: 8F/12M Group B: 5F/15M Group C: 6F/14M</td>
</tr>
<tr>
<td>Treatment in the ESWT and control group</td>
<td>BTA+ESWT Active ESW</td>
<td>Active ESW Sham ESW</td>
<td>Active ESW</td>
<td>No control</td>
</tr>
<tr>
<td>Type of Stroke in the ESWT and Control Group</td>
<td>N/A</td>
<td>13 IS/2 HS Healthy</td>
<td>15 IS/5 HS No control</td>
<td>6 IS/6 HS No control</td>
</tr>
<tr>
<td>Onset of stroke in the ESW and control group</td>
<td>2.5±1.5 mo. 53.4±23.9 mo. 17.6±2.36 mo. 24.9±11.9 mo.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involved muscles</td>
<td>Superficial flexors</td>
<td>Carpal flexors flexors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of ESWT source</td>
<td>Focus, Electromagnetic</td>
<td>Radial Pneumatic</td>
<td>Focus, Electromagnetic</td>
<td>Focus, Electromagnetic</td>
</tr>
<tr>
<td>Brands of ESWT</td>
<td>Minilith SL1; Storz Medical, Switzerland</td>
<td>BTL Industries Ltd, United Kingdom</td>
<td>Modulith SLK® by Storz Medical AG</td>
<td>Modulith SL by Storz Medical</td>
</tr>
<tr>
<td>Number of ESWT pulse</td>
<td>2000</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter of ESWT</td>
<td>0.03 ml/mm2 1.5 bar, 4Hz</td>
<td>0.03 ml/mm2 1.5 bar, 4Hz</td>
<td>0.03 ml/mm2 1.5 bar, 4Hz</td>
<td>0.105 ml/mm2 2.0 bar N/A</td>
</tr>
<tr>
<td>Period of ESWT</td>
<td>1 x day during a period of 5 days (5 sessions)</td>
<td>1 x sham ESW (I stage), 1 wk. "wash-out" period, 1x active ESW (II stage)</td>
<td>1x sham ESW (I stage), 1 wk. "wash-out" period, 1x active ESW (II stage)</td>
<td>1x wk. for 2 wk. (2 sessions)</td>
</tr>
<tr>
<td>F/U analysis</td>
<td>Reduction of the spasticity level in MAS (p<0.05) Diminishment of the spasm frequency score (p<0.05) Significant decrease of painful episodes in VAS (p<0.05) Reduction of the spasticity level in MAS (p<0.05) Significant improvement in the nEMG examination (p<0.001) Non-significant changes of painful episodes in VAS (p>0.05)</td>
<td>Reduction of the spasticity level in MAS (p<0.05) Significant alterations of parameters in the nEMG examination (p<0.05)</td>
<td>Reduction of the spasticity level in MAS (p<0.05) Significant decrease of painful episodes in VAS (p<0.05)</td>
<td>rESWT decreases spasticity in the flexor muscles of the wrist and hand in patients with chronic stroke. This effect persists at least 16 weeks and 8 to 12 weeks after 3 sessions and 1 session of rESWT, respectively.</td>
</tr>
</tbody>
</table>
Whether rESWT therapy is superior to fESWT in reducing spasticity is still uncertain. rESWT is characterized by having a larger therapeutic area compared with fESWT, and specific focusing is less important. Hence, rESWT seems more suitable for treating spasticity because it can be applied to the whole muscle belly rather than a small spot in the muscle. To confirm this hypothesis, further study is needed in the future.

The use of the MAS in the assessment of spasticity has been questioned because it measures a combination of spasticity and mechanical resistance, related to the viscoelastic properties of soft tissues and joints. However, since ESWT seems to have effects mainly on muscular mechanical resistance, MAS may be considered suitable for the assessment of the effects of this therapy. 2 sessions of ESWT seem to have long-term effects in reducing muscle tone and in enhancing motor impairment.

2 sessions of ESWT seem to have long-term effects in reducing muscle tone and in enhancing motor impairment.

At 12 weeks after therapy, 10 of the 20 patients showed persistent reduction in muscle tone. There were no adverse events associated with ESWT. No changes were observed in either the amplitude or latency of distal motor action potential and late responses, excluding a significant effect of shock wave therapy on peripheral nerves and spinal excitability.

The Brunnstrom recovery stage did not improve after either sham or active ESWT. The possible reason could be that a single session ESWT was administered or the small number of patients included in the study. The efficacy of combined treatment of BTX-A with ESWT, has greater efficacy than with ES. Given the clinical use of these combined interventions.

The efficacy of combined treatment of BTX-A with ESWT, has greater efficacy than with ES. Given the clinical use of these combined interventions.

<table>
<thead>
<tr>
<th>Clinical appraisals</th>
<th>Santamato et al. [62]</th>
<th>Daliri et al. [63]</th>
<th>Manganotti et al [64]</th>
<th>Troncati et al. [65]</th>
<th>Li TY et al [66]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The efficacy of combined treatment of BTX-A with ESWT, has greater efficacy than with ES. Given the clinical use of these combined interventions.</td>
<td>The Brunnstrom recovery stage did not improve after either sham or active ESWT. The possible reason could be that a single session ESWT was administered or the small number of patients included in the study.</td>
<td>At 12 weeks after therapy, 10 of the 20 patients showed persistent reduction in muscle tone. There were no adverse events associated with ESWT. No changes were observed in either the amplitude or latency of distal motor action potential and late responses, excluding a significant effect of shock wave therapy on peripheral nerves and spinal excitability.</td>
<td>The use of the MAS in the assessment of spasticity has been questioned because it measures a combination of spasticity and mechanical resistance, related to the viscoelastic properties of soft tissues and joints. However, since ESWT seems to have effects mainly on muscular mechanical resistance, MAS may be considered suitable for the assessment of the effects of this therapy. 2 sessions of ESWT seem to have long-term effects in reducing muscle tone and in enhancing motor impairment.</td>
<td>Whether rESWT therapy is superior to fESWT in reducing spasticity is still uncertain. rESWT is characterized by having a larger therapeutic area compared with fESWT, and specific focusing is less important. Hence, rESWT seems more suitable for treating spasticity because it can be applied to the whole muscle belly rather than a small spot in the muscle. To confirm this hypothesis, further study is needed in the future.</td>
</tr>
</tbody>
</table>

Table 1: Review of the scientific evidences including methodology components and main results of ESWT treatment on upper limb muscles affected by post-stroke spasticity

<table>
<thead>
<tr>
<th>Evidence level</th>
<th>Moon et al. [67]</th>
<th>Sohn et al. [68]</th>
<th>Kim et al. [69]</th>
<th>Santamato et al. [70]</th>
<th>Taberi et al [71]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included patients (n)</td>
<td>Clinical Controlled Trial, Open label, cross over study</td>
<td>Clinical Controlled Trial, Open label study</td>
<td>Prospective Clinical Trial, Open label study</td>
<td>Prospective Clinical Trial, Open label study</td>
<td>Prospective randomized controlled trial</td>
</tr>
<tr>
<td>Patients in the ESW and control group (n)</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Mean age in ESWT and control group</td>
<td>52.6±14.9 yrs.</td>
<td>54.4±9.4 yrs.</td>
<td>63.0 (38+76) yrs.</td>
<td>68.0 (34+86) yrs.</td>
<td>ESWT: 56.5±11.6 Control: 54.9±9.4</td>
</tr>
<tr>
<td>Gender in the ESWT and control group</td>
<td>13 F/17 M</td>
<td>6 F/4 M</td>
<td>4 F/6 M</td>
<td>5 F/5 M</td>
<td>8 F/15 M</td>
</tr>
<tr>
<td>Treatment in the ESWT and control group</td>
<td>Active ESW, Sham ESW</td>
<td>Active ESW, Sham ESW</td>
<td>Active ESW, No control</td>
<td>Active ESW, No control</td>
<td>ESWT: plus ESWT Both groups: Oral Tizanidine hydrochloride daily 2 mg for first 4 day then 4 mg till end + Stretching exercises included 30 min/day, 5 days per week</td>
</tr>
<tr>
<td>Type of Stroke in the ESWT and Control Group</td>
<td>16 IS/14 HS</td>
<td>2 IS/8 HS</td>
<td>5 IS/5 HS</td>
<td>12 IS/11 HS</td>
<td>ESWT: 11 IS/2 HS Control: 11 IS/1 HS</td>
</tr>
</tbody>
</table>

Table 1: Review of the scientific evidences including methodology components and main results of ESWT treatment on upper limb muscles affected by post-stroke spasticity.
<table>
<thead>
<tr>
<th>Parameter of ESWT</th>
<th>Male/Female</th>
<th>Active ESW</th>
<th>Sham ESW</th>
<th>Active ESW</th>
<th>Sham ESW</th>
<th>Oral Tizanidine hydrochloride daily 2 mg for first 4 days then 4 mg till end + Stretching exercises included 30 min/day, 5 days per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender in the ESWT and control group</td>
<td>13/17 F/M</td>
<td>4/8 F/M</td>
<td>5/5 F/M</td>
<td>8/15 F/M</td>
<td>No control</td>
<td>No control</td>
</tr>
<tr>
<td>Treatment in the ESWT and control group</td>
<td>4F/9M</td>
<td>4F/8M</td>
<td>8F/15M</td>
<td>No control</td>
<td>No control</td>
<td>No control</td>
</tr>
<tr>
<td>Type of Stroke in the ESWT and Control Group</td>
<td>16 IS/14 HS</td>
<td>2 IS/8 HS</td>
<td>5 IS/5 HS</td>
<td>12 IS/11 HS</td>
<td>No control</td>
<td>No control</td>
</tr>
<tr>
<td>Onset of stroke in the ESWT and control group</td>
<td>2.5±1.5 mo.</td>
<td>53.4±23.9 mo.</td>
<td>17.6±2.36 mo.</td>
<td>24.9±11.9 mo.</td>
<td>No control</td>
<td>No control</td>
</tr>
<tr>
<td>Involved muscles</td>
<td>Gastrocnemius (both bellies)</td>
<td>Gastrocnemius (medial belly) at the middle of the belly</td>
<td>Gastrocnemius (medial belly)</td>
<td>Gastrocnemius (both bellies)+soleus</td>
<td>Gastrocnemius (both bellies) at musculotendinous junction</td>
<td></td>
</tr>
<tr>
<td>Type of ESWT source</td>
<td>Focus, Piezoelectric</td>
<td>Focus, Electrohydraulic</td>
<td>Radial Pneumatic</td>
<td>Focus, Electromagnetic</td>
<td>Focus, Electromagnetic</td>
<td></td>
</tr>
<tr>
<td>Number of ESWT pulse</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Parameter of ESWT</td>
<td>0.089 mJ/mm²</td>
<td>0.10 ml/mm²</td>
<td>0.089 mJ/mm²</td>
<td>0.10 ml/mm²</td>
<td>0.089 mJ/mm²</td>
<td>0.10 ml/mm²</td>
</tr>
<tr>
<td>Period of ESWT</td>
<td>1 x sham ESW (I stage), 1 wk. "wash-out" period, 3 x active ESW (II stage)</td>
<td>Single ESW session</td>
<td>1 x day during a period of 3 days (3 sessions)</td>
<td>1x wk. during a period of 2 wk. (2 sessions)</td>
<td>1x wk. for 3 wk.</td>
<td></td>
</tr>
<tr>
<td>FU analysis</td>
<td>1 and 4 wk.</td>
<td>None</td>
<td>1.5 and 6 mo.</td>
<td>1 mo.</td>
<td>1,3,12 wk.</td>
<td></td>
</tr>
<tr>
<td>F/U analysis</td>
<td>Reduction of the spasticity level in MAS (p<0.05) Short-term improvement of the peak eccentric torque (PET) and torque threshold angle (TTA) parameters in isokinetic tests (p<0.05) Non-significant changes on the level of limb paresis in FMS (p>0.05) Non-significant improvement within the prom (p>0.05)</td>
<td>Reduction of the spasticity level in MAS (p<0.001) Non-significant alterations in the nEMG examination (p>0.05)</td>
<td>Reduction of the spasticity level in MAS (p<0.001) Significant decrease of painful episodes in VAS (p>0.001) Significant improvement in gait function in FGA (p<0.001) Diminishment of the plantar fascia thickness (p>0.001)</td>
<td>Reduction of the spasticity level in MAS (p<0.01 or p<0.05) Significant improvement within the prom (p<0.01 or p<0.05) Non-significant alterations in the nEMG examination (p>0.05)</td>
<td>Pain score, MAS, ROM and LL functional score are significantly improved since the first treatment session, and the effect persisted until the end of the study period at 12 wk.</td>
<td></td>
</tr>
</tbody>
</table>
ESWT combined with oral antispasticity and stretching exercises can decrease spasticity and improve lower extremity function.

Clinical appraisals

The musculotendinous junction of the medial and lateral gastrocnemius were stimulated once a week for a total of 3 weeks, the spasticity significantly relieved immediately after the treatment but the treatment effects decreased with time and became not statistically significant at four weeks after the treatment.

Table 2: Review of the scientific evidences including methodology components and main results of ESW treatment on lower limb muscles affected by post-stroke spasticity

Guo P, et al conducted a meta-analysis to combine the results of previous studies to arrive at a summary conclusion. The pooled data immediately after ESWT and 4 weeks after ESWT compared with baseline date all suggested that ESWT had a significant effect on relieving spasticity caused by stroke measured by MAS grades. Moreover, no serious adverse effects were observed in any patients after shock wave therapy. But the differences in the subtype of shock wave, therapeutic energy, treatment sessions, and tested muscles might lead to the varied effects reported in selected studies, leading to a significant level of heterogeneity among the studies [72].

Conclusion

ESWT is effective in treating spasticity and improving some parameters, although the improvement more significant immediately after apply ESWT and diminished with time. The non-invasive nature of ESWT and its much fewer adverse effects, it can be a useful alternative for treating spasticity especially in stroke patients or combined with other therapies as botulinum toxin injection, oral antispasticity drugs and stretching exercises. The various mechanisms are evidenced for ESWT in decreasing spasticity and enhance functions. However, the neurorehabilitation treatment as strengthening exercises for the antagonist muscles, endurance exercises, balance and coordination training are also need for enhancement the movement ability and the functional outcome of the patients.

References

Submit your next manuscript to Annex Publishers and benefit from:

- Easy online submission process
- Rapid peer review process
- Online article availability soon after acceptance for Publication
- Open access: articles available free online
- More accessibility of the articles to the readers/researchers within the field
- Better discount on subsequent article submission

Submit your manuscript at http://www.annexpublishers.com/paper-submission.php