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Murine osteoarthritis (OA) models are important for exploring OA pathology and treatment in the pre-clinical study. Longitudinal in 
vivo imaging modalities, including X-ray, computed tomography and magnetic resonance imaging, are commonly used diagnostic tools in 
OA clinic, while end-point histomorphometry analysis is the major outcome measurement in pre-clinical study because clinical imaging 
modalities have limited resolution for small animals. Thus, developing new longitudinal in vivo imaging protocols for murine models 
of OA is a critical unmet need. Here, commonly used post-traumatic murine models of OA and the utilization of X-ray, computed 
tomography and magnetic resonance imaging techniques to monitor disease progression and treatment response in these models is 
reviewed. Then ultrasound (US) imaging, a widely used and cost-efficient tool, in arthritis clinic and its utilization in knee OA of patients 
is introduced. Finally, our experience of using US imaging in normal and OA mouse knees is described to demonstrate the feasibility of 
US as a new imaging tool to measure disease progression longitudinally.

Osteoarthritis (OA)
Osteoarthritis is the most common form of arthritis that affects millions of adults worldwide [1]. There are no effective drugs for 
OA and current treatments are mostly palliative. OA is a whole joint disease involving cartilage, subchondral bone and synovial 
soft tissue [2]. Many factors contribute to OA pathogenesis, including mechanical stress, biochemical abnormalities, and metabolic 
disorders [3]. Murine models are important for OA research for the ease of genetic manipulation and inflicting joint trauma by 
surgery [4]. A challenge for murine models of OA is the lack of non-invasive approaches that allow researchers to assess the 
severity and progression of OA diseases longitudinally. X-ray and magnetic resonance imaging (MRI) are widely used in OA 
patients with established quantitative and semi-quantitative assessment standards [5-8]. However, use of these imaging modalities 
in small animals, especially mice, is limited due to expensive and low resolution equipment, and operator dependence. Medical 
ultrasound (US) has also been used to evaluate knee OA disease activity in patients, demonstrating that US detected synovial 
inflammation and effusion is positively correlated with radiographic OA and clinical symptoms [9]. Our group applied US scan 
on joints of TNF-transgenic mice, a mouse model of rheumatoid arthritis (RA) and demonstrated that both joint space volume 
and power doppler (PD) volume can be used as outcome measures of joint inflammation and active synovitis [10,11]. We have 
started to use US scanning in mouse OA and obtained promising results [12]. Here, the advantages and limitations of existing 
imaging modalities in murine models of OA are reviewed. Our own experience using US imaging modality in mouse OA joints 
is described, and the possibility to use longitudinal US as a new approach to quantify joint soft tissue changes in a mouse model 
of OA is discussed. 

Murine models of OA 

Preclinical OA models have greatly improved our understanding of OA pathogenesis. Multiple animal species have been used, 
including canine, goat, pig, horse, and rhesus macaque [13-21]. Mouse OA models are the most commonly used preclinical OA 
models due to the ease of surgical or genetic manipulation, drug administration, and their relatively low cost. Murine models of 
OA are roughly categorized into the following groups: surgery-induced, genetic- and chemical-induced joint injury.
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Figure 1: Cold wet sheet pack

Surgery-induced OA: This OA model mimics a pathologic process of posttraumatic OA (PTOA) in humans. It is achieved via 
joint destabilization caused by various surgical procedures in the knees. A mouse knee joint is composed of hard tissues and 
surrounding soft tissues that we named synovial soft tissues. Hard tissues consist of articular cartilage of the femur (lateral or 
medial condyle) and tibia (tibia plateau) and subchondral bones. Soft tissues include ligaments (medial and lateral collateral, 
anterior and posterior cruciate, patellar, medial meniscus tibial/coronary line), the meniscus (medial and lateral), and the synovial 
membrane. By transecting or one or several joint ligaments in combination of removing a portion of medial meniscus, mice 
develop osteoarthritic changes at different paces, depending on the procedure (Figure1). Among commonly used mouse PTOA 
models, the most severe cartilage damage is seen in knee that undergoes anterior cruciate ligament transaction (ACLT), followed 
by MLI (meniscal-ligamentous Injury)- transection of posterior cruciate ligament plus removal of medial meniscus and then by 
DMM (destabilization of the medial meniscus)-transection of the medial meniscus tibial ligament [22-25]. At the 2016 OARSI 
meeting, 133 out of over 900 abstracts used PTOA mouse models. Of these, 53 used the DMM model, 78 used the ACLT model 
and 2 used the MLI model. Surgical induced OA models ensure that OA is induced at the same time, thus minimizing the 
variation of the onset of OA in the genetic models. The combination of DMM and genetically modified animals are used to identify 
enzymes, proteins and transcriptional changes in OA pathogenesis [26-30]. In patients, PTOA is often diagnosed 15-20 years after 
the initial joint injury [31]. The DMM involves transecting the medial meniscal tibial ligament, which doesn’t exist in patients. The 
ACLT often causes acute joint damage and severe inflammation and the MLI requires highly experienced personnel. Despite these 
limitations, surgery-induced mouse models of OA are still most commonly used in pre-clinical studies. 
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Figure 1: A mouse knee joint and surgery procedures that induce posttraumatic OA. Scheme of a mouse knee joint. Potential targets of posttraumatic OA 
model are indicated in numbers. (1) ACLT (anterior cruciate ligament transaction): transection of ACL. (2) MLI (meniscal-ligamentous Injury): transection of 
MCL plus removal of medial meniscus.  (3) DMM (destabilization of the medial meniscus): transection of MMTL

Genetically modified mice with OA phenotypes: In different strains of wild-type mice, OA histological changes could occur 
spontaneously as mice aged, including C57Bl/6, BALB and Str/ort mice [32,36]. Although these spontaneously developed OA 
mice bear similar degenerative natures of human OA, it takes a long time to observe age-related OA changes. For instance, 
it takes 24-months for changes to become observable in C57Bl/6, 12-months in BALB mice, and 2.5-months in Str/ort mice 
[32,36]. Genetically modified mice show that many genes are involved in OA development. More than 18 different genetically 
different mouse strains were used in OA preclinical study as early as 1956 [37]. The ease of genetic engineering in mice has 
greatly advanced our understanding of OA pathology. The genetically engineered mice can be broadly classified into four broad 
categories dependent on gene or genes that are manipulated: cartilage matrix degradation, terminal (hypertrophic) chondrocyte 
differentiation or apoptosis, inflammation or synovitis, and bone turnover [38]. For example, a mutation in collagen or collagenase 
leads to the development of OA at a different age, confirming the crucial role of cartilage in OA development [39-41]. 

Non-surgical-induced OA: This is caused by intra-articular injection of chemicals or proteinases including iodoacetate, papain, 
or collagenase, which induces joint swelling and OA histological changes at greater rates of speed and severity [42-45]. Although 
non-surgical-induced OA has less variation among animals and fast development of OA-related pain in pre-clinical OA research, 
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its pathogenesis does not really represent the development and progression of human OA. As a result, it is not the ideal option for 
OA pre-clinical study and often requires another model for validation. 

Limitations of murine models of OA: Preclinical mouse OA models greatly advance our understanding of OA pathogenesis 
and provide a valuable tool to evaluate new OA drugs. However, a major limitation of preclinical models is that the anatomy and 
physiology between mice and human is not the same. For instance, human do not have the MMTL ligament. Moreover, unlike 
a variety of imaging modalities available to OA patients, preclinical moue OA models do not have an inexpensive and efficient 
imaging modality to monitor disease progression longitudinally. The primary outcome measurement of murine models of OA 
is structural damage or erosion of articular cartilage. The assessment of severity of OA relies on endpoint histology parameters 
such as the OARSI scoring and cartilage area [46]. Using endpoint assessment as primary outcome measurement greatly increases 
the number of experimental mice and associated cost. More importantly, the OA animal models vary in terms of severity and 
progression, thus evaluating OA progression with an in vivo imaging modality before the endpoint outcome measurement is 
beneficial. One of the most important symptoms of human OA, which can only be measured indirectly by parameters in mouse 
OA models.

Commonly used imaging modalities for human OA include X-ray, microCT (µ-CT) and magnetic resonance imaging (MRI) to 
observe changes in the anatomic feature, cartilage, subchondral bone, and synovium. These techniques have also been applied to 
murine OA models with limitations. 

In vivo imaging methods for murine OA models

X-ray: Radiography is a commonly used tool in the diagnosis of OA in patients. In 1957, Kellgren and Lawrence established 
semi-quantitative assessments of knee OA on X-ray film. Known as the KL grading system, this uses 5 grades of osteophyte 
formation that include narrowness of joint space, subchondral bone sclerosis, and morphometry change of the articular surface 
[5]. Due to the heterogeneity of OA pathology, the occurrence of these X-ray-based biomarkers varies among individuals and 
grading of joint space narrowing and osteophyte is observer-dependent [47,48]. A quantitative assessment of joint space width to 
better characterize OA progression was developed around the 1990s and its sensitivity was validated with MRI imaging [49-51]. 
However, radiographic imaging is limited to the observation of bone tissue, cartilage loss, and deformation at a very late stage of 
the disease. Meniscus, synovitis, joint swelling that manifest in the early stages of the disease cannot be detected with radiography. 
Moreover, few studies utilize radiography on murine models of OA due to limited resolution of small animal X-ray [24]. Moreover, 
joint space narrowing in mice OA happens at end stage disease, where OARSI score is 5-6, whereas most OA studies are concerned 
with early stage disease in order to identify new therapeutic targets. 

µ-CT: Subchondral bone remodeling is one of the characteristics of OA, including change in bone volume, growth plate 
morphology and increased bone turnover [52]. CT and high resolution CT is an X-ray based high-resolution imaging method 
optimal in evaluating subchondral bone plate morphology, thickness, trabecular pattern, osteophyte formation and calcification 
in the tendon [53,54]. Based on the utility of CT in clinic, laboratory µ-CT was developed and first used in a spontaneous OA 
mice model in 2004 to observe osteophyte, trabecular remodeling, subchondral bone plate thickening and sclerosis [55]. An ex 
vivo quantitative µ-CT method was later developed to evaluate the subchondral bone change in a collagenase-induced OA mice 
model [56]. McErlain et al. used in vivo µ-CT to measure volumetric bone mineral density in the subchondral area in rats with 
OA and found that they had lower bone mineral density four months after ACLT [57]. Botter et al. used in vivo µ-CT to evaluate 
cartilage damage and osteophytosis in a chemical-induced mouse OA model and found more cartilage loss, more osteophytosis, 
growth plate thinning, and increase in growth plate porosity at an early stage of OA, which could not be seen later [58]. In 
addition to assessing subchondral bone, µ-CT can also assess articular cartilage with phase-contrast imaging. Kotwal et al. used 
ionic contrast reagent Ioxaglate to detect the decrease of cartilage thickness in exercise-induced OA in mice ex vivo and validated 
their µ-CT findings with histological and biochemical methods [59]. Ruan et al. used contrast reagent osmium tetroxide for ex 
vivo contrast-enhanced µ-CT scanning in cruciate ligament injury and a DMM OA mouse model. They did 3D reconstruction to 
quantify cartilage volume, cartilage surface and bone surface area and validated results with histological scoring [60]. Lakin et al. 
further analyzed tibial cartilage glycosaminoglycan content in a collagenase-induced OA mice model ex vivo. They showed that 
glycosaminoglycan content measured with contrast-enhanced µ-CT correlated well with Safranin staining, validating their µ-CT 
findings [61]. It should be noted that although some ex vivo µ-CT imaging modality yields high resolution cartilage data, it is more 
similar to endpoint measurements such as histomorphometric analysis. This data should not be compared to data acquired from 
in vivo imaging. Moreover, since µ-CT is an X-ray based imaging modality it is not optimal for evaluating changes in soft tissues.

MRI: MRI is ideal for arthritic imaging due to its ability to distinguish the following joint soft tissues: cartilage, subchondral 
sclerosis, synovial fluid, osteophyte, ligament, patella position, and synovitis. Semi-quantitative standard, Whole-Organ Magnetic 
Resonance Imaging Scoring (WORMS) has been established for human knee OA, taking cartilage, marrow abnormality, bone 
cysts, bone attrition, osteophytes, compartment, menisci, ligaments and synovitis into consideration [7]. Ostergaard et al. found 
that synovial volume measured with MRI is highly correlated with the synovial hypertrophy scoring in RA patients, which is an 
indicator of inflammation of arthritis [62]. Our group used MRI to observe the progression of joint tissue damage in an RA mouse 
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model and developed quantitative MRI-based biomarkers. These biomarkers include synovial volume and popliteal lymph node 
volume validated with µCT and histology analysis [63,64]. MRI is also applied to small animal OA models to evaluate cartilage 
and soft tissues. Munasinghe et al. used MRI to monitor joint structures of exercise-induced OA in 3-, 7-, and 12-month old Str/
Ort mice. They found thickening of the patellar tendon, deformity, and sclerosis in 7-12 month-old OA mice, which was more 
severe in males than in females [65,66]. Goebel et al. assessed changes of femorotibial cartilage in rat knees that received ACL or 
sham surgery by 3D MRI at days 8, 14, 21, 40 and 60 post-surgery. Results indicated that mean cartilage thicknesses in OA knees 
decreased at an early phase (day 8, day 14) compared to sham knees and remained relatively stable thereafter. The histological 
correlation was significant only in untouched healthy cartilages [67]. These studies demonstrate the ability of MRI technique in 
assessing OA-related changes in femorotibial cartilage volume/thickness. Although MRI has been established as a useful tool to 
measure changes in soft tissues (i.e. synovial volume) it is very expensive. MRI data processing is time-consuming and requires 
specially trained operators. Seeking another imaging modality for mouse OA study is therefore encouraged. 

Single photon emission computed tomography (SPECT) and positron emission tomography (PET): Scintigraphy is an imaging 
module in which radioisotopes are attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals). The drugs are 
injected systemically and the emitted radiation is captured by external detectors (gamma cameras) to form 2D images. It is widely 
used for tracing bone tumors and inflammation [68,69]. In a rabbit ACL OA model, 99mTc-J001 was injected into the animals, 
internalized by macrophages and detected by scintigraphy, which showed that OA knee joint has higher scintigraphic signals. This 
showed higher internalization of 99mTc-J001, suggesting higher bone metabolism in OA [70]. SPECT also uses gamma cameras to 
capture emitted radiation from radioisotopes to generate 3D images [71]. SPECT was used with µ-CT to monitor bone turnover in 
a MLI-induced OA model in rats. While µ-CT was used for anatomic localization, SPECT showed increased subchondral turnover 
in OA joints when compared to healthy joints [53]. Similarly, radiolabeled tracer such as 18F-fluoride and 18F-FDG, are used to 
assess metabolism in PET imaging. Franc et al showed that both acute and chronic phases of arthritis have higher PET signal with 
18F-AraG tracer in a mice adjuvant arthritis mouse model [72]. However, radioisotope methods had a resolution of 1-2mm, which 
is insufficient to depict the anatomy of mice knee joint [47]. 

Ultrasound (US) as a new imaging tool for synovial changes in OA

US is to send pulses of US into tissue and then record sound echoes from the tissue as B-mode images or color Power Doppler 
(PD) signals, both of which can be reconstructed into a 3D volume measurement. Different tissue types have different echogenic 
properties, depending on their location relative to the surface, density, and fluid content [73]. B-mode US image arises from 
the coherent interaction of random scatterers within a resolution cell when a certain anatomical region is scanned [73]. Two-
dimensional images of the tissue are acquired with B-mode imaging, allowing researchers to inspect the anatomy of the tissue 
and navigate the identification of the region of interest for Power Doppler imaging. The Doppler Effect is named after Austrian 
physicist Christian Doppler in 1842. It describes the change in frequency of a wave (or another periodic event) for an observer 
moving relative to its source. Doppler ultrasound permits real-time viewing of blood flow through a blood vessel, and this method 
has been used to evaluate the major arteries and veins of the body, the heart, and in obstetrics for fetal monitoring. Power Doppler 
is one of Doppler ultrasound techniques with high sensitivity that could also detect the direction of flow. 

Rheumatologists started using US imaging to evaluate joint and soft tissue in the 1990s [74,75]. Since then, utilization of US in 
RA clinic has been shown to be beneficial to RA diagnosis [76-79]. The 2010 new classification criteria for RA issued by American 
College of Rheumatology (ACR) and European League against Rheumatism (EULAR) focused more on inflammatory changes in 
the joint, which is optimal for US imaging. In 2013, EULAR issued ten recommendations for RA imaging in clinical management, 
nine that involve US, which popularized its use in in RA clinics [80-83].

US imaging in human OA joints: OA pathology includes inflammatory changes in the joint, providing the rationale to use 
US to monitor OA progression and its responsiveness to therapy. In fact, the utilization of US imaging grows rapidly in OA 
clinics because structural abnormalities detected by the US are commonly correlated with clinical endpoints [84-87]. US are more 
sensitive in detecting osteophytes and cartilage changes during arthroscopy [88-90]. To avoid confusion with terminology used 
in traditional radiology and MRI findings, the term “ultrasonographic” is added prior to the observed physical or pathological 
anatomy structures. US-based biomarkers for OA have been developed according to findings in several clinical studies [9,91-95]. 
For instance, synovial thickness>=4mm is referred to as ultrasonographic synovitis in OA in an EULAR clinical study. This is 
validated with X-ray [91,92]. Suprapatellar or synovial effusion depth>=4mm is diagnosed as ultrasonographic effusion [9,93]. In 
2016, the reliability of US biomarkers on US findings from 13 patients with early knee OA was evaluated by 11 US experts in the 
Outcome Measures in Rheumatology (OMERACT) US Task Force on knee OA. A semi-quantitative scoring system was used to 
measure ultrasonographic synovitis, osteophytes, cartilage and meniscal damage. The results moderate to good intra- and inter-
observer reliability scores for synovitis and fair to good of intra- and inter-observer reliability scores for cartilage or meniscal 
damage and osteophytes range, respectively. This suggests that using a standardized protocol and semi-quantitative US scoring of 
pathological changes in knee OA can be reliable [96].

US imaging system for healthy mouse knee: To determine whether US can be used to evaluate pathology of knee joints in mice, 



Annex Publishers | www.annexpublishers.com                    
 

Volume 1 | Issue 1

                    Journal of Orthopaedics and Physiotherapy
 
5

Lateral resolution 
(µm)

Axial resolution 
(µm)

Center frequency 
(MHz)TransducerManufacturer

--28L38-22v CMUTVerasonics

704060RMV704Visualsonics Vevo3100

653070MX700Visualsonics Vevo3100

6.46.2275LN_300Ultrasound Biomicroscopes1

1 Fei, C., Chiu, C. T., Chen, X., Chen, Z., Ma, J., Zhu, B., Shung, K. K., and Zhou, Q. (2016) Ultrahigh Frequency (100 MHz–
300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining. Scientific reports 6, 28360

Table 1: Comparison of different ultrasound system

Vevo770 RMV704 Transducer 
 
Ultrasound gel 
 
Skin 
Ultrasonic synovium volume 
Lateral meniscus 
Patella ligament 
Medial meniscus 
 
Femur 
Tibia 
Mould 

Figure 2: Ultrasound scanning of a mouse knee joint. Knee joint is bent at an angle with a mould underneath. Centrifuged 
ultrasound gel is sprayed on the skin surface after completely removing fur with depilatory cream. The Vevo ultrasound 
RMV704 transducer is lowered and immersed in the gel to acquire 2D B-mode ultrasound images. For 3D data acquirement, 
the scan head moves in a set range vertical to the paper

we examined a WT mouse knee with small animal US system. Although various small animal ultrasound systems are commercially 
available, we used Vevo770 (VisualSonics, Toronto, Canada) because the RMV704 transducer had a center frequency of 40 MHz, 
with an axial resolution of 40µm and a lateral resolution of 70µm, which is most appropriate for the observation of mouse knee 
joint (Table 1). The highest center frequency of the L38-22v CMUT transducer from VeraSonics is 28MHz, which is not sensitive 
enough for the observation of mouse knee joint. On the other hand, the center frequency of ultrasound biomicroscope systems 
could be as high as 275 MHz, allowing the observation at a cellular level, which is also not appropriate for joint imaging. In brief, 
anesthetized mice are placed in a supine position with their knees flexed over a customized mould to an approximately 135o 
angle. US gel is applied between the skin and the 704 US scan head. The knee joint is scanned in a vertical direction. US detection 
presents as a triangular area underneath of skin, which can be delineated by a hyperechoic line of femoral and tibial articular 
cartilage (Figure 2). Histology of the same region revealed that it is composed of the patellar ligament, soft tissues including 
synovium, fat pad, soft tissue portion of the meniscus, and empty (synovial) space (Figure 3A). Histology observation cannot be 
precisely matched to US findings due to the following reasons: 1) US could detect fluid in the synovial space (Figure 3B). However, 
histological analysis requires fixation, dehydration, and sectioning, which results in the loss of joint fluid. 2) US wave is completely 
reflected at calcified bone surface. Anything beneath calcified bones is not detected in US images. Thus if calcification occurs in 
the synovium or the meniscus, anything beneath calcification is not detected. 3) US detection reflects the 3D shape of joint soft 
tissues, while histology only reflects a 2D image of a joint at certain embedded rotation. Thus, ultrasound findings in the knee 
joint is defined as US synovial volume (USSV), which includes the space below patellar ligament and above mature bone tissue 
of the femur, tibia, and meniscus. This differs from synovial space in an H&E-stained section in which normal knee joints only 
contain the space between the meniscus and articular cartilage, which is very small. However, USSV is larger in a normal joint that 
contains various soft tissues and fluid.
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Figure 3: Ultrasound imaging of C57Bl/6 male mouse knee at 3 month of age. (A) B-mode US imaging of the knee joint. The 
segmentation of US synovial volume is outlined by green USSV. Numbers indicate structures corresponding to those in histology. 1: 
Skin and hair. 2: Patellar ligament. 3: Fat pad. 4&5: Synovial space. 6: Connective tissue. 7:Calcified bone tissue. (B) Alcian blue/Orange 
G staining of the same knee joint

US in mouse OA joints: Compared to RA, OA joints have a much lower degree of inflammation and perhaps other soft tissue 
changes, making US detection more difficult. Spriet et al. first observed femoral cartilage damage in a rabbit ACLT OA model 
in vitro with B-mode US biomicroscopy. They semiquantitatively graded their US finding and validated US grade with histology 
grade, proving the potential of using US to monitor OA progression in small animals [97]. However, translating US biomicroscopy 
technique requires opening joint capsule to expose joint surface, which is invasive and cannot be used longitudinally.

In vivo US imaging protocol in an MLI OA mouse model (Figure 4). B-mode US at 4 and 11 weeks post-MLI on the same joints 
was performed. At the 4 week point, USSV was 2.76 +/- 0.54 (mm3) in MLI joints compared to 1.96 +/- 0.26 (mm3) in sham joints 
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US imaging in mouse RA knee: Dr. Schwarz’s group used US to examine joints of TNF-Tg mice, a mouse model of RA (11), 
because US is frequently used in RA clinic due to its nature of severe inflammation. They detected significantly increased USSV in 
TNF-Tg mouse joints, which correlates strongly with synovial volume measured with CE-MRI (63). Furthermore, the RA joints 
also have increased PD volume (PDV) measured with PD-US, which represents the volume of blood vessels. The PD signal is 
further validated by immunohistochemistry staining showing CD31 positive staining at the same site.
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(p=0.005, un-paired t-test). At the 11 week point, USSV increased to 4.7 +/- 0.64 (mm3) in MLI joints while USSV remained 
unchanged (1.92 +/- 0.24 mm3) in sham joints (p=2.43E-07, un-paired t-test). More importantly, USSV was markedly increased 
at the same joint that received MLI (p=6.66E-06, paired t-test), but not in joints that received sham operation (p=0.84, paired 
t-test). A significant change in MLI joints (73.14 +/- 17.56% in MLI vs. 0.07 +/- 18.06% in sham, p=1.8E-04, un-paired t-test) was 
detected when the percentage change of USSV between 4 and 11 weeks was calculated. An average of USSV in normal knee joints 
of 30 mice is 1.97 +/- 0.17 (mm3). Thus, a standard normal USSV in adult mice is below 2.15 mm3. Increased PDV was found in 
mouse knees that received Hulth-Telhag surgical procedure that combines MLI and ACLT, causing severe cartilage loss [12,98]. 

Based on these preliminary findings, US could be used to monitor OA disease progression in mouse PTOA models. It can detect 
early soft tissue changes prior to cartilage loss and allow tissue changes at the same joint to be compared [22]. Thus, quantitative 
USSV by US in OA joints have the following advantages 1) providing a 3D volumetric measurement of peri-articular soft tissue in 
real time; 2) randomizing experimental groups in intervention studies; 3) reducing the number of mice since the changes of USSV 
can be compared before and after the treatment at the same joint, and 4) enabling researchers to adjust the duration of treatment 
according to longitudinal USSV. 
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Figure 4: Ultrasound imaging detects OA progression. KWT mice (male, 10-week-old) received MLI surgery on the right knee (N=9) and sham 
surgery on the left knee (n=5). Mice were subjected to B-mode ultrasound scanning followed by 3D reconstruction and USSV measurement with 
Amira four and eleven weeks after MLI. (A) Representative ultrasound images of sham (green) and MLI (red) surgery mice 11 weeks after MLI. 
(B) USSV increased in MLI but not sham surgery group

By using the Vevo770 system with a US frequency of 40 MHz, our group has gained experience in US mouse knee joint and 
peri-articular soft tissues. However, US in mouse OA models also has its limitations. First, OA is a chronic disease with much 
less inflammation than RA. US may not be able to detect mild inflammatory changes and blood flow/vessels in peri-articular 
soft tissues of an OA joints. Second, the most common form of OA is an aging-related degenerative disease, which differs from 

Future perceptive
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Some of these limitations are due to intrinsic nature of OA mouse models, and others may be related to the resolution of the 
Vevo770 system. The latest US machines such as Vevo3100 imaging system has better resolution The US frequency in the Vevo3100 
imaging system is increased by 1.75 fold (70 MHz  vs. 40 MHz  in the Vevo770 system), greatly increasing the image resolution and 
enabling recognition of individual ligaments and meniscus. Another way to improve resolution is to use US-guided approach by 
injecting US contrast reagent into the knee joint. Furthermore, with enhanced resolution in the new imaging machine, we might 
be able to detect blood flow change in OA synovial soft tissues by PD-US.

Photoacoustic US has seen rapid growth as a biomedical imaging technique. In this imaging modality, endogenous energy is 
absorbed by the tissue and results in thermoelastic expansion of the tissue, which can be detected by an US transducer. Tissues 
with different blood flow and oxygenation status absorb heat differently, thus photoacoustic has been used in tumor diagnosis 
and other diseases [99]. Mice OA joints have thickened synovium and increased blood flow due to chronic inflammation, thus 
photoacoustic ultrasound shows great potential to monitor inflammation when combined with B-mode and Doppler ultrasound. 
However, it should be cautioned that since a healthy knee joint is not rich in blood vessels or soft tissues, it might be challenging 
to establish a basal level of photoacoustic signal. Moreover, typical OA develop milder synovitis than RA, thus it is more applicable 
to establish a robust photoacoustic protocol in the latter to determine whether this technique can detect small changes in blood 
flow and oxygenation status.

PTOA used in our study. Soft tissue inflammation occurs in age related OA in mice has not been well studied, partially due to the 
lack of a non-invasive longitudinal imaging modality. Third, US imaging of knee joint cannot distinguish fine tissue structures 
detected by histology and cannot be used to replace histological analysis. Finally, imaging and data analysis vary among individual 
researchers who are sectioning the region of interest from each image frame and orientation of the knee joint. As a result, one 
single researcher has to complete all the US imaging sections and data analysis for a given experiment. To reduce the variation 
and increase scientific rigor, the US imaging and sectioning of the joint space volume should be standardized by recognition of 
anatomic landmarks in the knee joint, and US data should be analyzed blindly (and preferably) by a different researcher.

Conclusion
US imaging represents a promising alternative for OA imaging, especially in terms of observing synovial soft tissues during disease 
progression. Advantages of US imaging include no radioactive exposure, relatively low cost, easy to learn and less time-consuming 
when compared to MRI. With advancing imaging techniques, it is likely that in vivo US imaging may achieve higher resolution 
and render more information from a live mouse knee joint. 
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