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Abstract
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The generalized theory of thermoelasticity is proposed by Lord-Shulman (1967) and is known as (L-S) theory which involves one 
relaxation time for a thermoelastic process [1]. The basis of the model proposed by Lord and Shulman was to modify Fourier’s 
law of the heat conduction equation by introducing a new physical concept which called a relaxation time needed for acceleration 
of the heat flow. The heat equation of this theory of the wave type, it automatically ensures finite speeds of propagation of heat 
and elastic waves. The remaining governing equations for this theory, namely, the equations of motions and constitutive relations, 
remain the same as,

Introduction

In this paper, the discussion will be on the physical quantities of generalized thermoelastic medium with double porosity under Lord 
and Shulman theory. The effect of rotation and gravity has been established. The half-space is considered of an isotropic homogeneous 
thermoelastic material. The numerical results are discussed graphically with comparisons in the presence and absence of the rotation 
field by taking the solution method in the form of the exponential function.
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 Thus, the heat conduction equation, for isotropic homogeneous body, based on (L-S) theory is given by:
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Where 0τ  is the relaxation time, the time lag needed to establish steady state heat conduction in a volume element when a 
temperature gradient is suddenly imposed on the element, satisfying the condition 0 0.τ >  

The equation of motion and heat equation with double porosity functions: 
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Propagation of the photothermal waves in a semiconducting medium under L-S theory by Othman et al. [2]. Othman et al. 
discussed the effect of the gravity on the photothermal waves in a semiconducting medium with an internal heat source and 
one relaxation time [3]. In the past some researchers have investigated different problems of rotating media. The propagation 
of plane harmonic waves in a rotating elastic medium without a thermal field has been studied [4]. It was shown there that the 
rotation causes the elastic medium to be depressive and anisotropic. An investigation of the distribution of deformation, stresses 
and magnetic field in a uniformly rotating, homogeneous, isotropic, thermally and electrically conducting elastic half-space was 
presented [5]. The effect of rotation on elastic waves has been studied [6,7]. The effect of rotation in a magneto-thermoelastic 
medium was discussed [8]. 

The origin of the linear theory of elastic materials with double porosity goes back to papers of Barenblatt et al. [9,10]. The theory 
of flow and deformation in double porous media was used by Khalili and Valliappan [11]. Masters Pao, and Lewis studied coupling 
temperature to a double porosity model of deformable porous media [12]. Khalili and Selvadurai studied the fully coupled 
constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity [13]. Zhao and Chen introduced 
the fully coupled dual-porosity model for anisotropic formations [14]. The dynamical problems of the theory of elasticity for solids 
with double porosity were studied by Svanadze [15]. Ainouz investigated the homogenized double porosity models for poro-
elastic media with interfacial flow Barrier [16]. Plane waves and boundary value problems in the theory of elasticity for solids 
with double porosity were studied by Svanadze [17]. Straughan studied the stability and uniqueness in double porosity elasticity. 
Mahmood et al. investigated the combined higher order finite volume and finite element scheme for double porosity and non-
linear adsorption of transport problem in porous media [18,19]. Some researches in the past have investigated different problems 
of gravity field. Othman et al. applied the normal mode analysis on two-dimensional electro-magneto-thermoelastic plane wave 
problem of a medium of perfect conductivity [20-22]. In the present paper, we have discussed a homogeneous thermoelastic half-
space with double porosity structure rotating uniformly with angular velocity and the effect of gravity, the equations of generalized 
thermoelastic material with double porosity structure with one relaxation time has been developed. Analytic solutions based upon 
normal mode analysis of the thermoelastic problem in solids have been developed. The effect of porosity and rotation is shown 
numerically graphically.

We consider a homogeneous thermoelastic half-space with double porosity structure rotating uniformly with angular velocity 
,nΩ = Ω where n is a unit vector representing the direction of the axis of rotation. The displacement equation in the rotating 

frame has two additional terms [Schoenberg and Censor (1973)]: Centripetal acceleration ( )uΩ× Ω×  due to time varying motion 
only and Coriolis acceleration 2 uΩ×   where ( , 0, )u u w=  is the dynamic displacement vector and angular velocity 

(0, , 0 )Ω = Ω . These terms, do not appear in non-rotating media.

Formulation of the Problem and Basic Equations

In case of isotropic solids, the constitutive equations for double porosity
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Equations of motion with the components of rotation and gravity 
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For the purpose of numerical evaluation, we introduce dimensionless variables
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We define displacement potentials 1φ  and 1ψ  which relate to displacement components 

 u1 and u3 as,
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Where, ω   is the complex time constant (frequency), i is the imaginary unit, and α  is the wave number in x-direction.

Using (27) in Eqs. (19) – (23), we obtain
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4 5 3 6

3 1 1 2 1 4
3 4 32

3
2

2 2 1 1
5 3 2 12 2

0 0 1 1 0 1 1 0

[ ( ) ( )] [ ( ) ( )] ,
[( )( ) ( )]

( ) ,  ( ),
( )

2( ( ) ) ( ) ( ) ,

n n n n n
n

n n n

n n
n n n

n

n n n n n

a B k a B k f a B k a B k f HH
a k B k f a B k a

a H a a H BH H H
k f B

b daH k a H H H
T T k T k T

H

α αλ µ
β β ω β ω β

− − − + + − − +
=

− + − −
− − −

= =
+

= − − − + +

2 2 2 1 1
6 3 2 12 2

0 0 1 1 0 1 1 0

2 2
7 3 4 8 1 2 1 9 3 4 1

0

2[ ( ) ] ( ) ( ) ,

[ 2 ( ) ],  ( ),  ( ).

n n n n n n

n n n n n n n n n n n n n

b dk a k H H H
T T k T k T

H i a k H a k H H k k H H k k H
T

α αλ µ
β β ω β ω β
µ η η η η
β

= − + − + +

= − − + = − − = − −

Boundary Conditions
We apply four boundary conditions for present problem at the plane surface z=0.

( )
1

3

3
( )

2

0
0

i t ax
xx

i t ax

Pe

T P e

ω

ω

σ
τ
σ

+

+

=
=
=

=

(48)

(49)

(50)

(51)

Applying Eqs. (48)-(51) in (36), (41), (46) and (47) we get 

4

5 1
1

4

9
1

0

n n
n

n n
n

H M P

H M

=

=

=

=

∑

∑

(52)

(53)

To get the solution of 3σ  and 3τ  substituting from Eqs. (34), (35) in (44) and (45) 
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4

8
1

4

2 2
1

0n n
n

n n
n

H M

H M P

=

=

=

=

∑

∑

(54)

(55)

To get 1 2 4, ,.....,M M M , we can put Eqs. (52)-(55) in the matrix

51 52 53 541 1

91 92 93 942

81 82 83 843

21 22 23 244 2

0
0

H H H HM P
H H H HM
H H H HM
H H H HM P

    
    
    =
    
    

    

(56)

Numerical Results
To study the effect of double porosity with the Rotation, we now present some numerical results. For this purpose, copper is taken 
as the thermoelastic material for which we take the following values of the different physical constants as [21].

10 -2 10 -27.7 10 . ,  3.86 10 . ,N M N mλ µ= × = × 3 -1 -1 3.86 10 . . ,  2.5,  -1,  K N s K a ω= × = = -5 -11.78 10 ,t Kα = ×
-38954 . ,  Kg mρ = * -1 -1

0 0383.1 . ,  293 ,  0.7,  0.5,  -1,C J Kg K T K xτ ξ= = = = = -5 -5
1 2  1 10 , 2 10 ,p p= × = ×

 0.5,  0.2,  9.8.t g= Ω = =

Following Khalili [17], the double porous parameters are taken as, 

5 5 5 2
11.3 10 ,  0.12 10 ,  1.1 10 . ,N b N N mα γ− − − −= × = × = ×  

5 2 5 2
1 20.16 10 . ,  0.219 10 . ,N m N mγ γ− −= × = ×

10 2 10 2 12 2
20.1 10 . ,  0.9 10 . ,  0.1546 10 . ,d N m b N m K N m− − − −= × = × = × 12 2

1 0.1456 10 . .K N m− −= ×

The numerical technique, outlined above, was used for the distribution of the real part of the temperature T the displacement 
components u, w the stress components ,xxσ  xzσ  and the components of double porosity σ  and τ  for the problem. All the 
variables are taken in non-dimensional form the result. 

Figures 1,2 show the comparison of the displacement u in the presence and absence of double porosity at ( 0.2,  0Ω = Ω = ). 
We find in Figure 1 that the displacement u increases at 0Ω =  then decreases until it decay to zero, while u at 0.2,  0Ω = Ω =  
decreases, then increases until it decay to zero. However, in Figure 3 the displacement   decreases at ( 0.2,  0Ω = Ω = ) and takes 
the form of the wave until it decay to zero. Figures 3,4 illustrate the comparison of the displacement w in the presence and absence 
of double porosity at ( 0.2,  0Ω = Ω = ). We find that in Figure 3 the displacement w increases at ( 0.2,  0Ω = Ω =  ) then 
increases until it decay to zero, but in Figure 4 the displacement w increases to a maximum value at  z=0.5, and then decreases 
to a minimum value z=1.5 until it decay to zero at ( 0.2,  0Ω = Ω = ). Figures 5,6 explain the comparison of the temperature T 
in the presence and absence of double porosity at ( 0.2,  0Ω = Ω = ). We find in Figures 5,6 that the temperature T decreases 
in both two figures and satisfies the boundary condition at ( 0.2,  0Ω = Ω = ). Figures 7,8 demonstrate the comparison of the 
stress component xxσ  in the presence and absence of double porosity at ( 0.2,  0Ω = Ω = ). We find in Figure 7 that the stress xxσ  
increases at 0.2Ω =  more than 0Ω =  to a maximum value at z=0.4, then decrease at the two cases and try to return to zero. In 
Figure 8 the stress  xxσ  decreases at ( 0.2,  0Ω = Ω = ) then increases at the two cases and takes the form of wave and try to return 
to zero. Figures 9,10 demonstrate the comparison of the stress component xzσ  in the presence and absence of double porosity at (

0.2,  0Ω = Ω = ). We find in Figure 9 that the stress xzσ  increases at 0Ω =  more than 0.2Ω =  than decreases until it decay to 
zero. Figure 10 illustrates that the stress xzσ  decreases to a maximum value at z=0.5, then increases to a minimum value at z=1.5 
in the absence of double porosity, and takes the form of wave and try to return to zero. Figures 11,12 explain the comparison of 
the equilibrated stresses σ  and τ  in the presence of double porosity at ( 0.2,  0Ω = Ω = ). We find in Figures 11,12 that the 
equilibrated stresses σ  and τ  increase to a maximum value at z=0.2, and ( 0.2,  0Ω = Ω = ), then begin to decrease and take 
the form of wave and try to return to zero.



Annex Publishers | www.annexpublishers.com                    
 

Volume 6 | Issue 3

Journal of Materials Science & Nanotechnology
 
9

Figure 1: Distribution of the displacement  u

Figure 2: Distribution of the displacement u

Figure 3: Distribution of the displacement w
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Figure 4: Distribution of the displacement w

Figure 5: Distribution of the temperature  T

Figure 6: Distribution of the temperature T
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Figure 7: Distribution of the stress component xxσ

Figure 8: Distribution of the stress component xxσ

Figure 9: Distribution of the stress component xzσ
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Figure 10: Distribution of the stress component xz

Figure 11: Distribution of the equilibrated stress σ

Figure 12: Distribution of the equilibrated stress τ
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Conclusion
The figures obtained by comparing double porosity in the presence and absence of rotation, important phenomena are observed:

1.  Analytic solutions based upon normal mode analysis of the thermoelastic problem in solids have been developed.
2.  The method that is used in the present article is applicable to a wide range of problems in hydrodynamics and thermoelasticity.
3.  There are significant differences in the presence and absence of double porosity under the effect of rotation.
4.  All the physical quantities satisfy the boundary conditions.  
5.  The value of all the physical quantities converges to zero, and all the functions are continuous.

The problem though theoretical, but it can provide useful information for experimental researchers working in the field of 
geophysics, earthquake engineering, along with seismologist working in the field of mining tremors and drilling into the crust of 
the earth.

Nomenclature

,λ µ  Lame' parameters                                             
 µ,w  Displacement vector

ijδ  Kronecker delta                                                            
ρ   Mass density            

 ce  Specific heat at constant strain
ijσ   The stress tensor 

 v1  The volume fraction field corresponding to pores and  is the volume fraction field corresponding to fissures 
,Ψ Φ   The volume fraction fields corresponding to v1 and v2 respectively    

 K*  The volume coefficient of thermal expansion          
0K ≥   Thermal conductivity      

 k1 and k2 are coefficients of equilibrated inertia            
T0  Reference Temperature 

0τ  Relaxation time
1 1, 2, , , ,b d b γ γ γ  Constitutive coefficients  

iσ   The equilibrated stress corresponding to v1  

iτ   The equilibrated stress corresponding to  v2
 T  The temperature change measured form the absolute temperature  T0

ijω   Skew symmetric tensor called the rotation  tensor 
 g  Gravitational field
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