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Combination therapy is the hallmark of therapies for cancer, viral or microbial infections, hypertension, and other diseases  
involving  complex  biological  networks. For example, the transformation of a normal cell to a cancer cell involves multiple genetic 
mutations and up to 12 pathways [1]. Therefore, therapeutic success can often be improved by concurrently and/or sequentially 
inhibiting multiple pathways/targets by combining drugs with different mechanisms of action. Synergistic drug combinations, 
which are more effective than predicted from summing the effects of individual drugs, often achieve increased efficacy with lower 
doses and have reduced toxicity [2]. Since many molecularly-targeted agents exhibit synergy when used in combination with 
≥2 cytotoxic drugs [2,3], significant interest remains in developing quantitative methods to detect drug synergy [4-9]. However, 
combination drug therapy targeting just a few gene products may be ineffective [4,10,11]. Increasing the number of agents in a 
combination may provide better outcomes. In the past decade, the approach to cancer therapy has been revolutionized by the 
identification of a variety of novel signal transduction targets amenable to therapeutic intervention. These targets were identified 
based on improved understanding of the molecular mechanisms of action of second messengers, other components of signal 
transduction pathways, and systems biology. These advances have also made available large number of potential agents and call 
for new quantitative approaches for combination therapy [6,12,13]. Despite the changing paradigm to target multiple pathways, 
methodological advances in accurately identifying drug interactions have fallen behind, as shown by a paucity of literature on the 
design and analysis of multi-drug combinations.

Introduction

Abstract
Inhibiting multiple pathways/targets with combination drug therapies is widely used to maximize therapeutic benefit in many diseases. 
Therapeutic success can often be improved by concurrently and/or sequentially inhibiting multiple pathways/targets by combining 
drugs with different mechanisms of action. It is critical to understand potential drug interactions in developing and optimizing new 
multidrug regimens. We used data from experiments of single drugs (and few combinations) and existing signaling network knowledge 
from sources such as KEGG, to develop a statistical rescaling model to describe the effects of drugs on network topology. The model 
comprises a Hill equation for signals arriving at each receptor, a generic enzymatic rate equation to transmit signals among connecting 
genes, and a regression model to represent the cumulative effect of genes implicated in activation of the cell death machinery. We 
performed in silico experiments to derive a global sensitivity index of each term in the functional ANOVA of the dose-response 
model by generating doses of the drugs with the Quasi Monte-Carlo method. Only terms with large (principal) global sensitivity 
indices remain in the functional dose-response model. Thus, we reduce a high dimensional problem into one that can be managed 
experimentally. The model generates an index that indicates potential interactions of  the drugs  and  the  principal combinations, those 
associated with large global sensitivity indices, can be considered as candidates for further experimental validation.
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Methods

The challenge presented by multi-drug combinations is exceptional. For example, with 10 drugs, each with only 3 doses,  the  
number of potential combinations reaches 1,048,545, a high dimensional statistical problem. Even with 5 drugs, the number 
of combinations is 1008. The exponentially growing number of combinations with even a few selected doses per drug quickly 
precludes  laboratory  testing. Despite the  biological  advances  mentioned  above  and  the importance of multi-agent combinations, 
current methods are mostly topological as opposed to quantitative, and do not account for high dimensionality and proper model 
assumptions [14,15]. Consequently, many multidrug combination studies use suboptimal experimental design and synergy 
analysis, where only pairwise combinations are studied and/or the dose of one or more drugs is fixed.

Modeling Biological Network

Currently no published methods for screening large number of combinations use both network information and single drug 
experimental data. One recent attempt to use network information is a search algorithm by Calzolari et al. [16] based on a 
deterministic model. The method can only accommodate 2 pre-fixed dose levels of each drug with no more than 6 constituent 
drugs. Furthermore, the method provides neither dose selection nor sufficient information on dose-response, partly because 
the method ignores the single drug dose-response data that is a prerequisite for drug combination studies. A method is urgently 
needed to enable optimal experimental design that provides the concentrations or doses of the combinations, and allow an 
experimentally feasible exploration of the dose-effect surface with the smallest possible sample size. We have developed a novel 
method to screen the large number of combinations and identify an experimentally manageable experimental design by using 
the dose-response data for single drugs and pathway/network knowledge to obtain an estimate of the functional structure of the 
dose-response relationship.

For the purposes of this study, biological networks controlled/regulated by a receptor(s) are viewed as comprising connecting 
genes and output nodes that are implicated in determining activation of the cell death machinery. Figure 1 presents a 
typical example network - apoptosis related signaling from the KEGG database (hsa04210). Different nodes have various signal 

Figure 1: The human apoptosis network extracted from the KEGG database (hsa04210). Genes are categorized as receptors (yellow circles), connecting genes 
(green rectangles), and the output nodes (red diamonds) that are implicated at the onset of the cell death machinery. A solid line with an arrow at the end 
indicates direct promotion; a dashed line with an arrow at the end indicates indirect promotion; a dashed line with a bar at the end indicates inhibition. A cross 
symbol between two genes indicates dissociation, in which case the two genes may be viewed as a single node (e.g., DFF45 and DFF40)
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propagation rules. For a given dose-level x = (x1, x2, …, xs)
T of drugs A1, A2,… AS, denote a0i (x) as the signal of receptor i obtained 

(i = 1, 2, …, r) and ai(x) as the signal connecting gene i obtained (i = 1, 2, …, r). Gene activity levels often exhibit a non-linear 
relationship to their upstream regulatory signals. Typically, a Hill equation [17] can be used to model the activity a0i (x) at receptor i,
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where αi and βi = (βi1, βi2,….βis)

T are the parameters to  be estimated. To characterize the transmission of signals among connecting 
genes, the generic enzymatic rate equations can be used to adjust for possible feedback loops. Such equations have been motivated 
by various computational and biological considerations, a result of the close interaction between experimental and computational 
efforts [18,19]. Let ai(x) be the activity at gene j and a(i, j)(x) the signal sending from gene j to gene i. The activity ai(x) at gene i is 
defined to be the summation of all signals a(i,j)(x) for gene j linked up gene i, and the generic enzymatic rate equation then suggests 
that

(2) 

where n(i) is the set of genes that signal to gene i, and ω is the expected steady state parameter. VFj
 and VBj

 are the forward and 
backward parameters, respectively. From the biological point of view, VFj

 can be interpreted as the steady state biomass flux sent 
out from gene j when the reaction is forward, while VBj

  is interpreted as the steady state biomass flux sent out from gene i when 
the reaction is backward. When the reaction from gene j to gene i is irreversible in the backward direction, VFj 

= 0. The number of 
parameters VFj

  and VBj
 may become large if many connecting genes exist in the network. The forward and backward parameters 

VFi
 and VBi

 of connecting gene i may differ with those of connecting gene j (i ≠ j). Statistical variations typically occur when 
signals pass though the network because of link instability, stochastic noise inherent in the signal propagation rules, and/or chaos 
phenomena from the presence of loops. To model the network efficiently, therefore, it is reasonable to assume that VFi

  and VBi
 (i 

= 1, 2,…) are random effects that  are independently and  identically distributed (i.i.d.) normal random variables with mean µ1  
and variance σ1

2.

A linear model is used to represent the cumulative effect of genes implicated at activation of the cell death machinery. For a given 
dose-level x = (x 1, x2,…xs)

T of drugs A1, A2,…, AS, let Y(x) be the observed viability and a(x)=(ail
(x),…aih

(x))T  be the vector of the 
activities at genes i1,….,ih  which activate the output, then we have

( ) ( ) ( )T
k kY x  u a x  u x ,  = + +∈0 (3) 

Where the subscript k is the k-th replication at dose-level x = (x1, x2,…, xs)
T,                                            is the measurement error 

of the observed data, and the standard deviation σ(x) of the measurement error may depend on the  dose-level x = (x1, x2,…, xs)
T. 

u0 is the intercept parameter, and u = (u1,.., uh)
T is the vector of regression parameters to be estimated. The positive parameter ui 

indicates promotion by gene i; the negative parameter uj indicates inhibition by gene j.

( ) ( )( )( )k x ~ N , x  σ∈
2

0

Training data
A training dataset is needed to model the biological network. In combination studies, the data from single drug experiments are 
usually available a priori. To use the network to discover multi-drug interactions, data from single drug responses cannot ensure 
the identification of parameters in models (1)-(3). Some limited data on the drug combinations is needed to find a model. The 
IC50 of each drug can be estimated from the single drug dose-response curves. We recommend a relatively simple experiment of 
the drug combinations with each drug at its individual IC50.  To explore the dose-response in high dimensions, which is not well 
estimated by the single drug experimental data, experimentally 2s higher order combinations are considered for s drugs. Table 1 
provides an example using 10 combinations of 5 drugs. The training dataset then consists of the data from single drug experiments 
and from limited higher order combination experiments.

(1) 

Table 1: 10 mixtures chosen for the combination experiments of 5 drugs
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Parameter Estimation
Based  on  the  training  data,  we  can  estimate  the  parameters  in  equations  (1)-(3)  with  the maximum likelihood approach. Let 
β = (β1

T,…, βr
T )T,  α= (α1,…, αr)

T,  and θ= (βT, αT, ω, uT, σ0
2, µ1, σ1

2 )T and be the vector of all parameters to be estimated. Since a(x) in 
model (3) equals to zero when x = 0, the intercept µ0 should be 100% cell viability if there is no drug intervention on the network. 

Suppose that there are n distinct inputs x1,.., xn, and ki replications at each input xi, the corresponding output is Yij  for j = 1,2,.., 
ki; and i = 1,2,…, n. For given µ1, σ1

2 and a sample VFi
  and VBi

  (i =1, 2,…) from the normal distribution N(μ1, σ1
2 ), the ECM 

algorithm [20] can be applied to obtain the maximum likelihood estimation of β, α, ω, u, σ0
2. Furthermore, for given β, α, ω, u, σ0

2, 
we  can  obtain n samples of VFi

  and VBi
 using  equation (3) with n distinct inputs x1,…, xn. The estimation of µ1 and σ1

2 can then 
be obtained. Details for parameter estimation are provided in the Appendix.

Functional ANOVA
After we obtain the estimated parameters in models (1)-(3), the drug dose-response surface y = g(x) can be estimated in silico. 
A detailed and rigorous definition of a drug dose-response surface can be found in the paper by Kong and Lee [7]. The drug 
dose-response surface is an (s+1)- dimensional response surface in s drug combinations which is used to describe the dose-effect 
relationship. In this work, we would not expect the precise drug dose-response surface to be adequately estimated with limited 
data and in silico experiments.  However, we can get sufficient information of drug interactions using the functional ANOVA [21-
23], which is similar to functional principal component analysis.

Recall  that x = (x1,x2,…xs)
T, is  the dose-level  of  s  drugs A1,A2,…, AS, and y = g(x) is  the corresponding dose-response. Let g0 = 

∫
[0,1]

s g(x)dx  be the overall mean of g(x). Then there is a unique decomposition

which satisfies 
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Moreover, (4) has orthogonal components, i.e., if (i1,…,iu)  ≠ (ji,…, jv),
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respectively. Note that
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are called global sensitivity indices [21-23]. The integer k is called the order of the index. All  Ri1,…,ik
ʹs are non-negative and their sum  

k
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The equality Ri1,…,ik 
= 0 implies that gi1,…,ik 

= 0 and so the interaction of drugs Ai1
…Aik

 is not significant. Significance of the interaction 
of drugs Ai1

…Aik
 decreases with decreasing Ri1,…,ik

. Hence the dose-response model can be reduced if we only retain the principal 
terms with the largest global sensitivity indices, an approach similar to principal component analysis. It is also expected that the 
number of terms in the dose-response functional ANOVA representation will be reduced significantly because the cumulative 
global sensitivity indices of the first few terms usually contribute a dominant portion (say, 80%) of the total variation [24]. To 
obtain the numerical values of the global sensitivity indices, the Quasi-Monte Carlo methods for approximating the integrals can 
be adopted. For more details, please refer to Fang et al. [24].

Results
To illustrate the proposed methods, we consider the apoptosis network (hsa04210) as shown in Figure 1. Two simulation 
experiments are conducted to investigate the effectiveness of the optimal network simulator for the discovery of multidrug 
interactions using the apoptosis signaling network. The first example involves a combination study of 5 drugs; the second example 
considers as many as 10 drugs.

Simulation 1
Consider a combination study of 5 drugs A1,…,A5. The dose-levels of A1,…,A5 are denoted by x1,…,x5, respectively. Without loss 
of generality, assume that x1,…,x5 Є [0,1] . Based on the KEGG network (hsa04210), the “true” dose-response is assumed to be

y(x) = 10−15log(x1 + 0.7165x2 + 0.5134x3 + 0.3679x4 + 0.2636x5)
+ 600(x1 + 0.5)(x2 + 0.5) cos(50x3 π ⁄2)(x4 − 0.5) sin(x5), (9) 

Where x = (x1,…., x5)
T.  Decompose the true dose-response (9) using the functional ANOVA representation (7) and (8), the global 

sensitivity indices are 38.06% for variable term x1x2x3x4, 29.61% for variable term x1, 15.78% for variable term x2 and 8.40% for 
variable term x3, respectively. The variable terms are ignored if their global sensitivity indices are less than 1%. The response in (9) 
can then be approximated by

( ) ( ) ( ) ( )*y  x . . x x x x . x . x . x≈ − − − −1 2 3 4 1 2 31 11 21 10 2 88log 2 43log 0 44log (10)

With the relative mean squared prediction error (RMSPE) given by RMSPE = {∫(0,1)5 [(y(x) − y*(x))/y(x)]2 dx} × 100% = 8.25%, which 
indicates that y*(x) is a good approximation of the true dose-response. The “true” response surface in (9) is mainly contributed 
by the interaction of A1A2A3A4 and drugs A1, A2 (the total of global sensitivity indices is 83.45%), 236 and the resulting global 
sensitivity indices are shown in the left pie of Figure 2.

Figure 2: Global sensitivity indices in Simulation 1. Left: global sensitivity indices of the true dose- response; Right: 
estimated global sensitivity indices of the predicted dose-response and their standard deviations in the parentheses.

We conducted the simulation experiments to investigate whether our method can identify correctly these true significant single 
drugs and drug interactions. From equation (9), the single drug dose-responses can be obtained by setting other variables to zero. 
For each drug, 8 concentration levels {0.0100; 0.0193; 0.0372; 0.0717; 0.1382; 0.2664;  0.5135;  0.9900} are chosen and 8 replications at 
each concentration with the random error ε ~ N(0,1). The generated data of single drug experiments are listed in Table S1 (Supplement).
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From the single drug dose-responses, the respective IC50 of each drug is estimated to be 0.07, 0.10, 0.14, 0.19, and 0.26 for drugs 
A1, A2, A3, A4 and A5. To generate the data of drug combinations, 10 mixtures as shown in Table 1 are chosen and three replications 
at each mixture with the random error ε ~ N(0,1) .  Data generated from combination experiments are listed in Table S2 of 
Supplement.

Based on the training data, we obtained the parameter estimation for models (1)-(3), and then the dose-response function y = g(x) 
can be simulated for any dose-level x = (x1,…,x5 )

T Є [0,1]5 of drugs A1,…..,A5. To estimate the global sensitivity index Ri1,…,ik
, the 

Quasi-Monte Carlo method is used because of its improved efficiency, fast convergent rates in approximating the integrals [25,26]. 
With the quasi-Monte Carlo method, we generate a set of 5-dimensional points {x(j) : j = 1,2,…,N}, which is space filling over the 
experimental domain [0,1]5. With properly chosen x(j) s, e.g., the uniformly scattered points, the quantity

( )( )k k

N
j

i , .,i i , .,i
j

D   g x ,
N

ˆ
 … …

=

= ∑1 1
1

1
(11)

converges to Di1,…,ik
 much faster  (O(N-1(logN)5-1)) than randomly generated x(j) s(O(N-1/2)). Hence, we can obtain the estimates of 

all global sensitivity indices Ri1,…,ik
. In this simulation, 10,000 quasi-Monte Carlo samples are generated and the estimation of the 

global sensitivity indices is repeated 100 times. The average of the estimated global sensitivity indices (and their corresponding 
standard deviations) are shown in the right pie of Figure 2. The small standard deviations indicate that the integrations are at 
convergence. On average, 34.04% global sensitivity index for variable term x1x2x3x4, 37.35% for variable term x1, and 21.60% for 
variable term x2. The results show that for the dose-response of the 5 drug combinations, the most significant contributions are the 
interaction of A1A2A3A4, drugs A1 and A2 (the total of global sensitivity indices is about 90%), which is consistent with the global 
sensitivity indices from the true dose-response.

Simulation 2
To further illustrate the proposed methods, we considered a combination study using more drugs for the simulation. The dose-
levels of 10 drugs A1,….., A10 are denoted by x1,……x5, respectively. Based on the KEGG network (hsa04210), the “true” dose-
response is assumed to be

    y(x) = 10 − 15 log(x1 + 0.8465x2 + 0.7165x3 + 0.6065x4 + 0.5134x5
                + 0.4346x6 + 0.3679x7 + 0.3114x8 + 0.2636x9 + 0.2231x10)
                + 200(x1 + 0.5)(x2 + 0.5)(x3 + 0.5)x4x5                                                                             (12)                                    
                + 300(x1 + 0.5)( x2 + 0.5)( x3 + 0.5)( x4 + 0.5)( x5 + 0.5) x9 x10
                + 500(x1 + 0.5)( x2 + 0.5)( x3 + 0.5)( x4 + 0.5)( x5 + 0.5)( x6 + 0.5)( x7 + 0.5)x8x9x10 

(13)

where x = (x1,…,x10)
T Є [0,1]10. Decompose the true dose-response (12) using the functional ANOVA representation (7) and (8), 

the global sensitivity indices are 41.69% for variable term x1x2x3x4x5 21.23% for variable term x1x2x3x4x5x6x7, 11.90% for variable 
term x1x2x3, 11.01% for variable term x1, and 7.21% for variable term x2, respectively. The variable terms are ignored if their global 
sensitivity indices are less than 1%. The response in (12) can then be approximated by 

y*(x) = –0.10 – 0.46log(x1) – 0.11log(x2)-0.54x1x2x3 + 1.64x1x2x3x4x5 – 3.33x1x2x3x4x5x6x7,   

with RMSPE = 5.21%, which indicates that y*(x) provides a good approximation of the true dose-response. Thus, the “true” 
response surface in (12) is mainly contributed by the interaction of A1A2A3A4A5A6A7,  A1A2A3A4A5, A1A2A3 and drug A1 (the total 
of global sensitivity indices is 85.83%); the resulting global sensitivity indices are shown in the left pie of Figure 3.

Simulation experiments are conducted to investigate whether our method can correctly identify these true significant single 
drugs and drug interactions in this setting. From equation (12), the single drug dose-responses can be obtained by setting other 
variables to zero. The corresponding IC50 of each drug is estimated to be 0.07, 0.08, 0.10, 0.11, 0.14, 0.16, 0.19, 0.22, 0.26, and 0.31 
for drugs A1, …, A10, respectively. For each drug, 8 concentration levels {0.01; 0.02; 0.04; 0.07; 0.14; 0.27; 0.51; 0.99} are chosen 
with 8 replications at each concentration with the random error ε ~ N(0,1). The data generated for the single drug experiments 
are listed in Table S3 (Supplement). To generate the data for drug combinations, 20 mixtures are chosen with three replications at 
each mixture with the random error ε ~ N(0,1) , and the corresponding data of combination experiments are listed in Table S4 of 
the Supplement.

Similar to Simulation 1, the estimation of parameters in models (1)-(3) is obtained using the training data. In this simulation, 
10,000 quasi-Monte Carlo samples are generated and the estimation of the global sensitivity indices is repeated 100 times. The 
average of the estimated global sensitivity indices (and their corresponding standard deviations) are shown in the right pie of 
Figure 3. The small standard deviations indicate that the integrations are at convergence. On average, 45.39% global sensitivity 
index for variable term x1x2x3x4x5, 25.91% for variable term x1x2x3x4x5x6x7, 9.27% for variable term x1x2x3, and 8.97% for variable 
term x1, respectively. The results show that for the dose-response of the 10 drug combinations, the most significant contributions 
are the interactions of A1A2A3A4A5, A1A2A3A4A5A6A7, A1A2A3 and drug of A1 (the total of global sensitivity indices is about 90%), 
which is also consistent with the global sensitivity indices from the true dose-response.
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Figure 3: Global sensitivity indices in Simulation 2. Left: global sensitivity indices of the true dose- response; Right: 
estimated global sensitivity indices of the predicted dose-response and their standard deviations in the parentheses.

To get an idea of the computing efficiency of the proposed method, Table 2 below provides the CUP times for Simulations 1 and 
2. The CUP time for each simulation can be divided into two parts: the first part is for the ECM algorithm (parameter estimation), 
the second part is for the functional ANOVA (integral calculation). It can be seen from Table 2 that the 10-drug simulation is 
much more time-consuming than the 5-drug simulation. However, the CPU time for the 10-drug simulation is still acceptable, say 
that about 1 hour for the ECM algorithm and about 5 minutes for the functional ANOVA on a regular PC.

Functional ANOVAECM algorithm

8.8s985.6sSimulation 1 (5 drugs)

300.6s4052.3sSimulation 2 (10 drugs)

•  The stop error for ECM algorithm is 0.01
•  The number of Monte Carlo samples for functional ANOVA is 10,000
•  PC configuration: 2.10GHz triple-core AMD Phenom II N830 CPU and 4 GB memory
•  Software: Matlab 2013b
Table 2: CUP time for the simulations 

Discussions
Cancer cells carry out their functions following appropriate responses to the extracellular and intracellular inputs to their complex 
network of signaling pathways. Many genes that code for proteins in these pathways are controlled by regulatory proteins that up-
regulate or down regulate these genes depending on the inputs to the signaling network. Though striking progress is being made 
in extracting networks using a range of experimental data [27,28], knowledge of signaling networks remains predominantly at the 
level of topology rather than details on the rate constants and nonlinear message passing that occurs within the networks. Models 
to distinguish between members of a population of cells, for example, different cancer cells from different normal tissue types, 
require differences in message passing parameters and/or expression levels of the genes in the network.

Using data from experiments with single drugs (and some drug combinations) and the existing network information, we proposed 
statistical models to describe the drug effects on the network. Through these statistical models, we conducted computer experiments 
(in silico) to derive a global sensitivity index of each term in the functional ANOVA of dose-response model by generating doses 
of the drugs with the Quasi Monte-Carlo method. Then, we can predict the main effects that occur with combinations of multiple 
drugs. Two simulation studies illustrate the superior performance of our methods. The principal global sensitivity indices generally 
select 3 to 4 terms of multidrug combinations in the functional ANOVA model if the true dose-response function is smooth. 
Therefore, the model generates an index that indicates potential interactions of  the  drugs  and  the  principal  combinations,  those  
associated  with  large  global  sensitivity indices, can be considered as candidates for further experimental validation.

In some signaling networks there may be loops due to feedback links among genes. Several procedures can simulate signal 
propagation passing networks with loops [29-31].  For any specific loop, an effective algorithm for optimal signaling with feedback 
loops should be developed. Furthermore, to investigate drug interactions it is important to understand the mechanisms of each 
drug in drug combination studies. If the relationships among drugs and receptors/or genes are known, the number of parameters 
in models (1)-(3) can be decreased, and some constraints can be applied to achieve high prediction accuracy. It is worth noting 
that the number of parameters in our network model is usually large even there are some constraints on them. The large number 
of parameters may cause over-fitting. One possible solution to address the potential over-fitting problem is to use the penalized 
likelihood approach or regularized regression machine learning, i.e., a penalty function such as Lasso [32] or SCAD [33] can be 
added to (A3) to achieve sparse estimation.

Conclusion 
In this paper we have developed a novel method to screen the large number of combinations and identify an experimentally 
manageable experimental design by using the dose-response data for single drugs and pathway/network knowledge to obtain 
an estimate of the functional structure of the dose-response relationship. It is highly beneficial in bringing forth a framework 
for selecting drug interactions, and developing experimental designs and statistical procedures to estimate the high dimensional 
dose-response surface.
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