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Abstract
Attribution of etiology for disease syndromes is critical to guide appropriate public health interventions. Partial latent class analysis 
model (pLCM) methods have recently been developed to address this area of research; however, model parameters, assumptions, and 
performance are not well understood for the general etiology problem. Here, we first establish a relationship between the etiology 
proportions defined by pLCM and those defined by population attributable risks (PAR) under a unified probability structure. We 
performed simulation studies to characterize scenarios where pLCM models may not yield reliable estimates and to illustrate the 
strengths and limitations of pLCM. We identified mitigation strategies for scenarios in which model performance was not optimal. 
Based on these results and the theoretical examinations of pLCM parameters and assumptions from the population attributable risk 
point of view, we propose systematic strategies to enhance etiology research, drawing upon the recent experience of the Aetiology of 
Neonatal Infections in South Asia (ANISA) study. 
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Introduction 
Determining etiology of infections is complex as the laboratory test based evidence of pathogenic infection is often nondeterministic. 
Recent advancements in molecular testing techniques provide accurate laboratory evidence for pathogen presence in clinical 
specimens. However, presence of a pathogen does not necessarily imply that the pathogen causes the disease, especially for 
pathogens that may have a carriage state in the healthy population. Standard epidemiologic comparisons of laboratory detection 
of pathogens among samples from disease cases and healthy subjects become complex to interpret when pathogen carriage rates 
are high and laboratory tests are imperfect. 
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However, epidemiological interpretations of pLCM parameters and model assumptions raise questions. For example, under what 
conditions that the etiology proportions defined by pLCM relate to that defined by PAR? What are the practical implications of 
violating these conditions? Resolution of these issues would aid identification of pathogens that could be appropriately studied by 
pLCM. Further, the numerical performance of pLCM has not been extensively studied yet. The successful application of pLCM to 
the PERCH study may have been fostered by key study features not always achievable in etiology studies: case definitions specific 

In recent years, studies have used an attributable etiologic fraction (PAR) approach that applies the concept of population 
attributable risk to the etiology question [1]. These methods implicitly assume perfect sensitivity of all laboratory tests; i.e., true 
exposure to the pathogens is 100% detectable by the tests. Furthermore, the extension of the population attributable risk concept 
to the estimation of the attributable fraction of more than 1 pathogen simultaneously through logistic regression lacks statistical or 
epidemiological justification and often results in confusing conclusions [1-3]. It is also not possible to combine results for the same 
pathogen across multiple specimens, or to provide an etiologic attribution at the individual level for individual cases. To address 
some of these limitations, Wu et al. developed a partially-Latent Class Model (pLCM) for the Pneumonia Etiology Research for 
Child Health study to attribute etiology and characterize the associated pathogen proportions among pneumonia cases in children 
under 5 years of age [4]. Implementation of pLCM to the PERCH (Pneumonia Etiology Research for Child Health) project was 
presented in Knoll et al. [5]. 
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Given a disease, a pathogen and a corresponding laboratory diagnostic test that was well calibrated with 100% laboratory specific-
ity, the population attributable risk (PAR) approach defines the relationship of the pathogen to the disease through considering 
exposure to the pathogen as a risk factor of developing disease. This approach uses the laboratory test result as indication of the 
exposure. The pathogen proportion is then defined as the proportion of disease cases being prevented if the pathogen exposure 
was removed completely form the study population. For example, if the disease rates are el   and  ul  in the exposed and unexposed 
respectively, then the pathogen’s proportion of the disease is defined as:

Two approaches to define pathogen etiology proportions for one single pathogen: A disease etiology study could be a case 
only study if there was a gold standard to identify each case’s true pathogenic causes. In reality, such a gold standard is usually not 
available. For example, currently available laboratory tests are only capable of detecting presence of pathogens in the collected 
specimen, and/or may fail to detect all possible infections. Standard epidemiological strategies address the issue through collect-
ing samples from healthy subjects and then comparing laboratory detection of pathogens among samples from disease cases and 
healthy subjects. Two different approaches were developed based on different interpretations of the strategy.

Then in section 3, we conduct and summarize a series of simulation experiments that shed light on when and how pLCM produces 
accurate estimates, which allow for further understand of the pLCM model. Together with our epidemiologic interpretations of the 
model parameters and assumptions, these simulation experiments provided general insights and guidelines on design and analysis 
of etiology studies using the pLCM method. We summarized those insights and guidelines in appendix with a description of our 
implementation practice strategies in a large community-based study, Aetiology of Neonatal Infections in South Asia (ANISA). 
The real data application of our methods was presented and published in the Journal of the Lancet [6].

In section 2 of the paper, we present a unified probability structure for pathogenic infections that assumes exposure to the pathogens 
can result in a disease-free carriage status. This state can be identified by one or more laboratory tests, and such carriage increases 
the likelihood of developing disease. Under this structure, we show that the pLCM defined etiology proportions are approximately 
equal to that defined by PAR under a few assumptions with clear epidemiological interpretations.

where Ce  is the proportion of subjects with exposure to the pathogen, or with positive laboratory test results, in the study popu-
lation RRe expresses the risk of developing disease among those with exposure to the pathogen, relative to those without such 
exposure. Since, in general, the laboratory test is not 100% sensitive,  calculated from the positive laboratory test results would 
underestimate the true exposure proportion (assuming perfect specificity). The corresponding PAR estimation would then usually 
underestimate its true value.

A Unified Probability Model for Pathogen Etiology Proportions

or equivalently: 

Although PAR is a population based concept, in practice it has been applied to case-control study settings too, replacing the rela-
tive risk with the relative odds (or odds ratio), and replacing Ce with proportion of controls with positive test results. However, such 
approximation might cause some severe bias, especially when the laboratory test cannot detect non-disease status of pathogen car-
riage, and/or when the control samples are substantially different from the general study population due to matching of controls 
to the cases.

Another approach to define pathogen proportion is to extend the original laboratory test for pathogen appearance into a pseudo 
test for disease etiology and integrate it in a mixture model for cases. Here, all cases are divided into two groups: those with the 
pathogen as etiology cause and those with other causes. The etiology proportion is then the proportion of the group with the 
pathogen as etiology. However, since we can only observed the laboratory test results, not the group membership of the subjects, a 
pseudo binary test is constructed based on the laboratory test with true positive rate θ and false positive rate δ  defined as

for pathogenic infection; an adequate sample of health subjects providing accurate estimation of false positive rates; an adequate 
sample of cases with positive gold standard results; and prior knowledge of the sensitivity of the employed laboratory tests) [5]. 
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In the literature, there are two ways to extend the PAR concept to multiple pathogens. For a subset of pathogens S, the first ap-
proach defines the combined etiology of the S pathogens as the proportion of cases being prevented should all pathogens in S being 
removed from the study population, with formula similar to Equation [1]. This approach neither offers an alternative formula such 
as the one in Equation [2] that relates PAR with relative risk, nor can it establish a relationship between the combined PAR with 
individual PARs. For example, it usually does not suggest additivity of the individual PARs:

Note that this pseudo test is different from the original laboratory test. For example, the laboratory false positive rate (1 – specific-
ity) is usually very small for our well-calibrated laboratory tests, but the false positive rate for the pseudo test could be very high 
as it measures the carriage status of the pathogen in study population. Also note that while this definition is based on cases only, 
sample from healthy subjects can be used to construct estimations for the usually unknown false positive rates.

Under this mixture model structure, if both θ and δ are known, then the pathogen proportion can be calculated with following 
formula:

We now extend our definitions of pathogen proportions to multiple pathogen situation. Suppose there are 1K ≥  pathogens that 
may cause the disease. For pathogen , 1, ,k k K= …  , let  Tk be an indicator variable for the result of a binary diagnostic test. As 
before, a positive test result (i.e. Tk = 1) indicates that the pathogen appears in the collected specimen (i.e. the subject is exposed 
to the pathogen). 

Pathogen etiology proportions with multiple pathogens

Where PP is the proportion of having positive laboratory test results among cases. Following lemma establishes a relationship be-
tween the etiology proportions defined by the two different approaches.

Lemma 1: If the false positive rate equals to the product of the true positive rate and the study population’s exposure rate to the patho-
gen, i.e.

then the population attributable risk as defined in equation [2] equals to the mixture component proportion defined in equation [3].

To understand what might be implied in equation[4] let’s consider a simple, yet common infectious disease development process 
in which exposure to pathogen results in a carriage state prior to developing disease. Now suppose the pathogen will appear in the 
collected specimen for subjects in either carriage or disease status, then the true positive rate is just the laboratory test’s sensitivity. 
Hence the right side of equation is the probability of being tested positive for subjects in the study population. The quantity only 
approaches the false positive rates (i.e., the left side of Equation) when the proportion of all carriers that would develop disease is 
low. In other words, if removing diseased cases from study population will not substantially modify carriage proportion Ce, then 
the two definitions of pathogen etiology proportions are approximately the same. 

However, for some other pathogens there is no such a carriage status and/or the laboratory test cannot detect the status. The 
corresponding false positive rates are then equal to zero. Hence, Equation [4] cannot not be true. Consequently, the pathogen 
proportion defined via the PAR approach will not equal that defined by the mixture model. Pathogens with such characteristics 
will further challenge our interpretations of pathogen proportions when the two definitions are extended to a situation of multiple 
pathogens. .

The other approach to extend PAR to multiple pathogens is to consider the K test results as K risk factors and apply logistic regres-
sion to obtain odds ratios for each factor. The model adjusted odds ratios are then utilized in Equation 2 (as approximation to 
the relative risk) to calculate individual “adjusted” etiology fractions. Unfortunately, such ad hoc approach does not retain good 
epidemiology interpretation of PAR. Furthermore, a few artificial adjustments are required. For example, to avoid possible nega-
tive values of “adjusted” etiology fractions, pathogens with odds ratios less than 1.0 are removed from the regression equation 
Additionally, the approach does not constrain the individual etiology fractions to be additive to the combined PAR and does not 
even constrain the overall sum of individual adjusted PAR to within 100%.

On the other hand, extension of mixture model approach to multiple pathogens is straightforward. All cases are divided into  K + 
1 groups corresponding to the K pathogens and one extra class of “Other/None” for cases caused by none of the K pathogens. Let  
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, 1, , , 1k k K Kπ = … + be the proportions of the (K+1) class, such that 

1
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=∑ . For pathogen k and its corresponding

laboratory test Tk , we introduce a pseudo test with true positive rate kθ  and false positive rate kδ , such that: 

If  kθ  and  kδ  are known for all k, then theoretically the etiology fractions kπ  can be calculated with the same formula as in 
Equation [3]. 

Our question is: under what conditions do the two approaches define similar pathogen proportions? More precisely speaking, 
when does a relationship as in Lemma 1 hold for multiple pathogens? Since the mixture model based definition implies additivity 
of individual pathogen proportions, we also explore the conditions that when PAR based definition possess such additivity. We 
answer those questions based on a common probability structure as introduced below.

Let the baseline disease rate, or probability of developing diseases in a given time period without exposing to any of the K patho-
gens, be P0. For a subset S of the K pathogens, let Sp∆   be the incremental probability of developing the disease for subjects car-
rying all of the S pathogens, with the limitation that P0  +  1.0Sp∆ ≤  Also let CS be the proportion of the population exposed to all 
pathogens in S. When S contains only one pathogen such as pathogen k, the incremental probability of developing disease and 
the carriage rate are simply denoted as kp∆  and CK respectively. Then following lemma says the additivity of the incremental risks 
implying additivity of the PAR defined pathogen proportions.

Lemma 2 For any given subset of pathogens S, if the incremental probability of developing disease Sp∆   is additive, namely , 

 

 S k
k S

p p
∈

∆ = ∆∑ then the combined pathogen proportion  PARS is also additive: 

and:

Examples of violation of the additivity of incremental probability of developing disease include pathogens that are very infectious, 
such as exposing to the pathogen would almost certainly imply disease. They also include pathogens that do not have a carriage 
status or the carriage status cannot be detected by the corresponding laboratory tests. For such pathogens, there will be no posi-
tive test results from healthy population. These are also the situations that a case control study design might not properly estimate 
the pathogen proportion using the PAR approach as the odds ratio would become infinity and the individual PAR as defined in 
Equation 2 would be 100%. Therefore such pathogens’ pathogen proportions might be estimated and interpreted alone with an 
understanding that their individual pathogen proportions are not additive to other pathogens’ pathogen proportions.

Lemma 3 For any given subset of pathogens S, let Sp∆   and CS be the incremental probability of developing diseases and the pro-
portion of study population exposed to all pathogens in S, respectively, then with following conditions:

1. Additivity of incremental probability of developing disease: 
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2. Independence of pathogen carriage: 
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The pLCM (Partially Latent Class Model) Model:
When the model parameters kθ  and  kδ , are unknown further assumptions are needed in order to estimate the etiology propor-
tions kπ  in the mixture model . Let iky  be the test results for case i and pathogen k using laboratory test Tk If we further assume 
conditional independence of the laboratory test results:

for any of the (K+1) possible etiology classes, then the mixture model becomes the pLCM model as introduced in Wu et. al [4]

The parameters are updated by adding the number of cases assigned to each class to the corresponding prior distribution’s param-
eter of the same class.

Similarly, if we use a joint bivariate Beta distributions for the priors of TPRs and FPRs:

Notice that if we let Zi be the true (unobserved) etiology of case , 1, ,i i N= … . Then

The parameters of the basic pLCM in Equation [7] can be estimated under a Bayesian analysis framework using conjugate priors for 
the parameters, for example, (K+1)-class Dirichlet distributions for the pathogen proportions and Beta distributions for the true 
and false positive rates, to construct a Gibbs sampler. Let ( )1 1, , ,K Kπ π π +Π = … , ( )1, , Kθ θΘ = …  and ( )1, , Kδ δ∆ = …  

be the pathogen proportions, true positive rates and false positive rates respectively. For case i Let � ( )1 2, , ,i i i iKY y y y= …  

be the observed binary results for the K tests and ( )( )1 2 1 , , , ,i i i iK i KZ Z Z Z Z += …  be the imputed pathogen classes from the 

previous iteration such that iKZ  takes the value 0 or 1 only, and 
1
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=∑ . If we use a Dirichlet distribution as the prior for 
the pathogen frequency:

Then the sampling distribution ( | , )f Y ZΠ  of Π  given observed data and the imputed latent classes will still be a Dirichlet 
distribution with parameters:

Similar to Lemma 1, condition 3 implies that for each pathogen, only a small proportion of exposed subjects will develop into 
disease, in other words kp∆  needs to be small for all pathogen k. In fact, if there are some pathogens with large kp∆ , then it is likely 
that either condition 1 or condition 3 will become invalid. Therefore, in order to retain additivity of individual etiology proportions 
(required for mixture model approach) and to offer a proper epidemiology interpretations to the defined etiology proportion, we 
should be careful to include pathogens with large kp∆  values in our model. Such pathogens may need to be studied separately with 
an understanding that their etiology proportions cannot be additive to other pathogens.
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It is also straightforward to extend pLCM to situations with discrete strata of covariates, such as study site, age at enrollment, age 
group, and disease severity status. In such an extended model, the pathogen proportions and the false positive rates are allowed to 
change from strata to strata, reflecting variation of disease etiology and pathogen carriage rates. The true positive rates do not vary 
across different strata, since the case definition and laboratory procedures are identical, regardless of the covariate values. 

While the primary objective is to estimate pathogen proportions at the population level, pLCM, as suggested by the implemented 
Gibbs sampler, addresses the question through iteratively identifying the etiology of individual cases, or equivalently imputing 
the latent classes at each iteration of the Gibbs sampler. Consequently, pLCM also establishes the individual etiology, in terms of 
probability that an individual case is due to each of the pathogen classes as presented by the posterior predictive distribution. Such 
individual pathogen probabilities, or the corresponding imputed latent classes, can be used to diagnose validity of pLCM model 
assumptions.

The sampling distribution of the latent class Zi given observed data and the parameters , ,Θ ∆ Π , i.e., ( ) | , , ,i if Z Y Θ ∆ Π  is 

proportional to a product of the pathogen proportions Π  and a vector of weights: ( )( )1 2 1, , , ,i i i iK i KW w w w w += …  defined as:

A random sample of Zi can then be drawn from the multinomial distribution proportional to * iWΠ . 

The basic pLCM can be extended to situations where multiple pathogen-specific tests are performed for some of the pathogens. 
The only change is in Equation [10] where the weights will be multiplied for the performed tests, with an assumption that the test 
results are conditionally independent given the actual status of disease etiology

Simulation design and objective: The basic structure of pLCM including model equation, definitions of parameters, the Gibbs 
sampler implementation in estimating the model parameters, as well as extension of the basic model to more general situations are 
described above. Our primary objective was to understand the performance of pLCM in estimating pathogen proportion under 
a range of conditions. As we mentioned earlier, success of pLCM relies on using data of direct relevance to etiology (high quality 
control data so that false positive rates can be estimated accurately, and positive results from gold standard tests for true positive 
rates and pathogen proportions) to partially reveal the latent pathogen infection status of individual cases. Extra information, 
such as historical knowledge on accuracy of some laboratory tests of pathogens provides constraints that facilitate convergence of 
pLCM as demonstrated in the PERCH study [5]. 

Performance of pLCM through simulation experiments

For example, the Beta parameters for the posterior distribution of TPRs will be updated by all cases assigned to the pathogen class: 
the number that tested positive will be added to the first parameter of the prior Beta distribution while the number that tested 
negative will be added to the second parameter. 

then the sampling distributions given observed data and the imputed latent class are also Beta distributions:

0 0(  | , ), 1, 2, ,j j j jBeta a b j Kθ θ∼ = …

0 0(  | , ), 1, 2, ,j j j jBeta c d j Kδ δ∼ = …
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When the ratio of true TPR / true FPR was low, the estimated proportions were similar across pathogens regardless of the true 
underlying proportions (Table 1, first two rows). This suggests that noise (high FPR) masked the difference across pathogens even 
for some pathogens with moderate proportions, e.g. 8%. The smaller values of relative absolute deviance in Table 1 (such as at P8, 
TPR=0.4 and FPR=0.3) were artificial due to the fact that we have exactly 10 pathogen classes. 

Our simulation experiments were designed to explore the impact of such factors on pLCM accuracy and to describe conditions 
where pLCM performance may be unreliable.

The first set of simulations assesses the impact of different combinations of true and false positive rates on pathogen proportion 
estimates based on the basic simulation design above, with one test per pathogen. The second set of simulations explores whether 
the introduction of multiple tests (with potentially different specimens) for a single pathogen would substantially improve the 
estimation. In this context, multiple tests refer to either different laboratory tests performed on the same specimen type (such as 
blood culture and molecular testing of nucleic acid extracted from blood), or the same assays run on different specimens from 
the same case (such as blood and nasopharyneal/oropharyngeal swabs); it does not refer to multiple replicates of the same assay. 
Since the regular latent class model can be applied to estimate a single pathogen proportion if there are at least three (conditionally 
independent) tests for that pathogen, we then compare the performance of pLCM with that of the regular latent class model when 
there are three separate tests for each of the pathogens [7]. Finally, we assess if one or more cornerstone pathogens will improve 
the overall estimation of pLCM by assigning pathogen status to a subset of cases with a high probability. 

The basic simulation design consisted of 9 pathogens with pathogen proportions increasing from 0 to 8% at 1% increments. The 
9 pathogens account for 36% of the case population and the “Other/None” class accounts for the remaining 64%. The simulation 
generated 4,000 cases and 1,200 healthy individuals, and each simulation experiment was replicated 100 times. All simulations 
were run for 10,000 iterations with the first 5,000 as the burn-in period. We assessed model performance in estimation of indi-

vidual pathogen proportions by a relative absolute deviance measure defined as 
�  

  , 1, 2, 9
 

j j

j
j

p p
r j

p

−
= = … , where  pj is the true 

pathogen proportion and � jp  is the model estimate. We consider 0.5jr ≥  as poor estimation. If a large proportion of simulation 
replicates generate poor estimates, then we consider pLCM inappropriate for the specific simulation setting.

We used a ( )1, ,1Dirichlet …  distribution-- the uniform distribution on the 10 dimensional simplex as the prior distribution for 

pathogen proportions, and used 
1 1,
2 2

Beta  
 
 

-- the Jeffery non-informative prior for Bernoulli events—as the prior distribution

for the TPRs [8]. This prior distribution setting is equivalent to adding a total of 10 pseudo cases, or one pseudo case per pathogen 
class, to the case population of 4,000, with 50% of chance to be tested positive for each of the laboratory tests. Overall, the contribu-
tion of the prior distribution to the pathogen proportions is very small and non-informative. The prior distributions for FPRs are 
constructed using the healthy individual data: the two parameters of the Beta distributions are simply the number of positive and 
negative test results among healthy individuals.

Performance of pLCM for different combinations of TPRs and FPRs: In the first experiment, we assessed pLCM performance 
assuming there was only one laboratory test for each of the 9 pathogens. We assume the 9 tests shared the same values of TPR 
and FPR. Three levels of FPR (30%, 10% and 1%) and four levels of TPR (40%, 60%, 85% and 95%) were examined for a total of 
12 combinations. Based on the average pathogen proportions (over the 100 simulation replicates) and assessment of the relative 
absolute deviance, when the underlying noise (true FPR) was large, model estimates were poor (Table 1).

Simulation results

Model estimation of pathogen proportions improves as the FPR reduces; however, it is only when the true FPR=1% that the model 
estimates become acceptable with absolute bias less than 1.0% and the percentage of poor estimates less than 30%. Nevertheless, we 
observed that within the same FPR level, higher resolution of the laboratory tests or a higher value of the true pathogen proportion 
resulted in better pathogen proportion estimation. Finally, the model usually over-estimated pathogen proportions for pathogens 
with low true proportions. Bias was especially large for true pathogen proportions between 0 and 1%. Correspondingly, the pro-
portion assigned to the Other/None class was usually under-estimated by pLCM. 

Effect of multiple tests on single pathogen proportion estimation: For the same 9-pathogen design with 4,000 cases and 1,200 
healthy individuals, we next considered three different tests named similarly to the actual tests used in ANISA, and with character-
istics similar to some of the pathogen specific tests in ANISA [6]. The laboratory methods for molecular testing (TAC) and blood 
culture were described in Saha et al. [9]. The three tests are comprised of the blood TAC (test 1) (TPR=0.40, FPR=0.10); respiratory 
TAC (test 2) (TPR=0.85, FPR=0.10), and blood culture (test 3) (TPR=0.2, FPR=0.0). We then evaluated the accuracy of pathogen 
proportion estimates resulting from six models: blood TAC alone (model 1), respiratory TAC alone (model 2), blood TAC+blood 
culture (model 3), respiratory TAC+blood culture (model 4), respiratory TAC + blood TAC (model 5), and all three tests (model 
6). The overall performance of the six models is presented in Figure 1. The percentage producing poor pathogen proportion esti-
mates is summarized in Table 2.
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Note: The top half of the table shows the average pathogen proportion estimates for 100 replicates of simulation; TPR and FPR did 
not vary by pathogen. The bottom half shows the percentage of replicates with relative absolute deviance larger than 50%.  The relative 
absolute deviance was not calculated for the pathogen with 0% pathogen proportion as the quantity was not defined for 0% true 
proportion, nor for the class of “Others/None” as the percentages are near zero for almost all situations. 
Table 2: Impact of test characteristics and multiple tests per pathogen on the ability of pLCM to estimate the true pathogen proportion

Pathogen

P0 P1 P2 P3 P4 P5 P6 P7 P8

Model
True Pathogen Proportion

0 1 2 3 4 5 6 7 8

Percent of replicates with absolute difference over true value>0.5

1 100 97 63 41 28 29 30 22 27

2 100 65 47 35 26 27 15 19 12

3 100 67 40 37 23 23 23 29 25

4 100 24 21 13 6 6 0 0 0

5 100 31 25 11 11 11 4 9 4

6 100 29 21 4 1 1 0 0 0

Note: Three tests were simulated. Test 1:  TPR=0.40, FPR=0.10; Test2:  TPR=0.85, FPR=0.10 and Test 3: TPR=0.20, 
FPR=0.0. Six models are fitted:  Model 1: Test 1; Model 2: Test 2; Model 3: Test 1 and Test 3; Model 4: Test 2 and Test 
3; Model 5: Test 1 and Test 2; Model 6: Test 1, Test 2, and Test 3.  Based on the average of 100 replicates of simulation 
runs.  Standard boxplot structure is used displaying interquartile range, minimum and maximum values, and outliers.
Table 1: Performance of basic pLCM (a single test per pathogen) for different values of true positive rate (TPR), false 
positive rate (FPR), and true pathogen proportion

Pathogen

True 
FPR

True 
TPR

P0 P1 P2 P3 P4 P5 P6 P7 P8 Other/None

True pathogen proportion

0 1 2 3 4 5 6 7 8 64

Estimate

0.3

0.4 8.43 8.37 9.24 8.86 8.66 8.97 8.87 9.14 9.18 20.28

0.6 7.73 7.93 8.68 8.78 8.99 9.48 9.77 9.83 10.45 18.37

0.85 6.43 6.63 7.04 8 8.37 9.61 10.27 10.39 11.95 21.31

0.95 5.39 5.73 6.83 7.78 7.93 9.07 9.54 10.84 12.07 24.83

0.1

0.4 4.92 5.65 5.59 6.21 6.98 7.04 8.01 9.04 8.81 37.74

0.6 3.2 3.71 3.91 4.98 6.27 6.25 6.84 8.39 9.12 47.34

0.85 2.12 2.99 3.57 4.37 5.76 6.44 7.67 8.98 9.76 48.33

0.95 2.18 2.98 3.48 4.79 5.55 6.64 7.91 9.28 10.6 46.59

0.01

0.4 1.06 1.58 1.99 3.09 3.39 4.4 5.25 6.11 7.46 65.67

0.6 0.78 1.37 2.1 3.29 4.22 5.18 6.29 7.31 8.03 61.43

0.85 0.58 1.34 2.35 3.67 4.69 5.92 7.11 8.44 9.74 56.16

0.95 0.52 1.48 2.5 3.94 5.05 6.21 7.54 8.97 10.27 53.52

Percent of replicates with absolute diff over true value > 0.5

0.3

0.4 100 100 100 89 68 41 32 12

0.6 100 100 100 92 69 57 37 27

0.85 100 98 95 71 65 63 52 47

0.95 100 95 84 67 60 50 48 48

0.1

0.4 100 93 71 56 44 36 30 24

0.6 96 67 58 45 34 21 21 20

0.85 91 59 37 44 30 29 35 27

0.95 85 53 45 33 36 34 33 33

0.01

0.4 51 19 25 16 8 7 6 5

0.6 38 20 14 15 8 3 1 1

0.85 38 25 19 16 7 7 4 4

0.95 43 33 26 16 15 11 9 7



Figure 1: Comparison of the accuracy of pathogen proportion estimates resulting from 6 different pLCM models using simulated data for ten pathogen classes
Note: Three tests were simulated. Test 1: TPR=0.4, FPR=0.1; Test 2: TPR=0.85, FPR=0.1; and Test 3: TPR=0.2, FPR=0. Six models are fitted: Model 1: Test 1; 
Model 2: Test 2; Model 3: Test 1 and Test 3; Model 4: Test 2 and Test 3; Model 5: Test 1 and Test 2; Model 6: Test 1, Test 2, Test3. Based on 100 replicates of 
simulation runs. Standard boxplot structure is used displaying interquartile range, minimum and maximum values, and outliers.
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For designs including three tests for a single pathogen, the pathogen proportion can be estimated by standard latent class analysis 
methods (such as the method in Latent Gold Statistical Package) [7]. However, information from other tests for other pathogens 
can provide additional improvement, although in some indirect way, regarding pathogen proportion estimations. For example, the 
probability of a case assigned to a given pathogen increases if the case tested negative for all other pathogens. Standard latent class 
analysis ignores such indirect information, while pLCM incorporates it naturally.

For the same simulation experiment above, we conducted separate latent class models for each of the 9 individual pathogens and 
compared the estimated pathogen proportions with those obtained from pLCM (Table 3). As anticipated, pLCM yielded more ac-

Adding blood culture to a imperfect (TPR=0.85, FPR=0.10) test such as the respiratory TAC test greatly improved pathogen pro-
portion estimates, while adding blood culture to a poor (TPR=0.4, FPR=0.10) test such as blood TAC did not result in accurate 
estimates. Moreover, combining the two TAC tests generated much better estimates than each test alone. The best performance was 
achieved when all three tests were used. Therefore, it is always beneficial for pathogens of key epidemiologic interest to incorporate 
multiple pathogen-specific tests into the study design, especially when a high FPR is expected. 

Note: Three tests were simulated. Test 1:  TPR=0.40, FPR=0.10; Test2:  TPR=0.85, FPR=0.10; and Test 3: 
TPR=0.20, FPR=0.0. Model 1 is the pLCM model while Model 2 is the regular latent class model for each 
individual pathogen.  The performance of pLCM model is obvious using different types of measurement.
Table 3: Comparison of pLCM estimates of pathogen proportion with regular latent class regression 
models, based on a simulation using 3 tests per pathogen

Pathogen

P0 P1 P2 P3 P4 P5 P6 P7 P8

True Pathogen Proportion

0 1 2 3 4 5 6 7 8

Estimate (%)

pLCM 0.30 1.08 2.11 2.97 4.02 4.87 5.91 6.92 8.08

Regular latent class 0.94 1.46 2.24 3.15 3.93 4.92 6.20 7.24 8.09

Root Mean Square Error (RMSE)

pLCM 0.34 0.56 0.88 0.68 0.88 0.99 0.91 1.04 0.99

Regular latent class 1.21 0.99 1.31 1.58 1.55 2.00 1.99 2.43 2.08

RMSE over true value

pLCM 0.68 0.56 0.44 0.23 0.22 0.20 0.15 0.15 0.12

Regular latent class 2.42 0.99 0.66 0.53 0.39 0.40 0.33 0.35 0.26

Percent of replicates with absolute difference over true value > 0.5

pLCM 100 29 21 4 2 1 0 0 0

Regular latent class 100 33 33 33 19 18 14 11 5
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Note: Model 1 is based on 9 pathogens with single test:  TPR=0.40 and FPR=0.10.   Model 7 was constructed adding 8 
other pathogens each with three tests.  Only the performance of the first 8 pathogens were summarized in the table.
Table 4: pLCM estimation of pathogen proportion for pathogens with a single test when pathogens with 3 tests were 
added to the model

Pathogen

P1 P2 P3 P4 P5 P6 P7 P8

True Pathogen Proportion

1 2 3 4 5 6 7 8

8 pathogens with a single test

Estimate (%) 3.05 4.23 4.89 5.29 6.40 6.61 7.51 8.93

Root Mean Square Error (RMSE) 2.42 3.19 3.06 2.75 3.51 3.02 3.44 3.40

RMSE over true value 2.42 1.59 1.02 0.69 0.70 0.50 0.49 0.43

Percent of replicates with absolute difference over true value > 0.5 100 64 54 42 34 32 37 20

Bias 2.05 2.23 1.89 1.29 1.40 0.61 0.51 0.93

Addition of 8 pathogens with 3 tests each

Estimate (%) 2.46 3.35 4.10 4.41 5.80 6.15 7.27 8.26

Root Mean Square Error (RMSE) 1.84 2.23 2.12 1.96 2.46 2.58 2.83 2.90

RMSE over true value 1.84 1.12 0.71 0.49 0.49 0.43 0.40 0.36

Percent of replicates with absolute difference over true value > 0.5 100 44 40 26 25 18 17 12

Bias 1.46 1.35 1.10 0.41 0.80 0.15 0.27 0.26

Figure 2: Pathogen proportion estimate accuracy based on simulations of a pLCM model including 8 pathogen classes with a single test 
each (Model 1) and a model that includes an additional 8 pathogen classes with 3 tests each to the original 8 pathogens (Model 2)

curate estimates than standard latent class analysis.

In this simulation experiment, we created an input dataset with 8 pathogens (pathogen proportions 1 to 8%) and a single labora-
tory test each, and one with an additional 8 pathogens with the same pathogen proportions: 1 to 8%. These extra pathogens were 
each tested by all three tests introduced above (Table 2). We then estimated the pathogen proportions of the first 8 pathogens by 
pLCM including the 8 pathogens only and by pLCM including the original 8 plus the additional 8 pathogens. Either way, the in-
put data for the first 8 pathogens was the same. The simulation results documented a clear improvement in accuracy of pathogen 
proportion estimates especially for pathogens with smaller true proportions (Table 4) (Figure 2).

The indirect effect of including multiple pathogens in pLCM: For a majority of viral pathogens and a few bacterial pathogens in 
ANISA only single tests were performed. Such pathogens cannot be studied individually using a traditional latent class modelling 
approach. While pLCM provides a general solution, Table 1 shows that if all tests were associated with high background noise, 
then the pathogen proportion estimates from pLCM might be questionable. However, if the pathogen list in the study contains 
some cornerstone pathogens with either multiple tests, small false positive rates or high true pathogen proportions, then attribu-
tion to the “cornerstone” pathogen class will be more accurate, improving estimation of true and false positive rates for the other 
pathogens lacking these desirable features.
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pLCM is a powerful advance in etiology attribution, and estimates pathogen proportion accurately under a wide range of con-
ditions; however, there are important analytic pitfalls to be aware of. Many of these can be mitigated through the approaches 
described in this paper. Nevertheless, there is no systematic approach to examine all identifiability issues. The procedures we sug-
gested in this paper should be regarded as preemptive strategies to prevent model identifiability issues. Future research is needed 
for developing tools that examine these issues in a more systematic way [10-12].

The authors thank Dr. Maria Knoll, Dr. Zhenke Wu, Dr. Scott Zeger, and the entire Pneumonia Etiology Research for Child Health 
(PERCH) team for their invaluable advice and assistance with the development of the ANISA statistical methodology. We thank 
Dr. Samir Saha for his guidance and leadership of the ANISA study, as well as the entire ANISA team. Wementor thank Dr. Cyn-
thia Whitney for her leadership and mentorship of the US Centers for Disease Control and Prevention (CDC) members of the 
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It is also critical to exclude pathogens likely to result in non-identifiability. Most commonly, this includes pathogens with a single 
laboratory test that yielded very few positive results, as well as pathogens with high carriage rates in the study population or with 
a low ratio of true to false positive rates. Pathogens with these attributes should be carefully examined and excluded from pLCM.
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