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Abstract 
The objective of this thesis is to study neutrosophic R −  module . Some basic features and definitions of the classical R −  module are 
expanded. It is clear that every neutrosophic R −  module over a neutrosophic ring is a R −  module. Also, it is shown that an element 
of a neutrosophic R −  module over a neutrosophic ring can be infinitely conveyed as a linear combination of some elements of the 
neutrosophic R −  module. Neutrosophic quotient R −  module and neutrosophic R −  module homomorphism are also covered. 

Keywords: Neutrosophic Ring; Neutrosophic Vector Space; Left Neutrosophic R −  module; Right Neutrosophic R −  module; 
Neutrosophic R −  module Homomorphism

Introductıon
In our life there is three kinds of logic. the first is classical logic which is gives the form “true or false, 0 or 1” to the values.The second 
is fuzzy logic was first advanced by Dr. Lotfi Zadeh in 1965s. It recognize more than true and false values which are considered 
simple. With fuzzy logic, propositions can be represented with degrees of truth and falseness. And the third is neutrosophic logic 
that is an extending fuzzy logic which includes indeterminacy  I.

Florentin Smarandanche defined the idea of neutrosophy as a new type of philosophy in 1980. After he found  the approach of 
neutrosophic logic and neutrosophic set where we have a percentage of truth in a subset T and the same of falsity of the subset F, 
and a percentage of indeterminancy in the subset I for every structure in neutrosophic logic  where T , I, F  are subset of 0,1 .− +    
Therefore this neutrosophic logic is called en extension of fuzzy logic especially to intuitionistic fuzzy logic.

Since we live in a world filled in indeterminacy, the Neutrosophic found their method into modern research. We can introduce the 
Neutrosophic Measure and as a result the Neutrosophic Integral and Neutrosophic Probability in several methods, because there 
are different kinds of indeterminacies, depending on the problem and issue we have to fix. Indeterminacy is distinguished from 
randomness. Indeterminacy can be caused by physical space materials and type of construction, by items involved in the space, or 
by other factors. Space objects and structures are the main causes of  indeterminacy and other factors can be considerable .

For more explanation, we can give this simple example: if we say  “the weather is hot today”. In the classical logic we will say “yes 
or not , true or false”. However, in fuzzy logic we can say “it is  70% and 30% cold” . On the other hand, in neutrosophic logic we 
can say “It is 60-70%  hot, 25-35%  cold, and 10% indeterminate”.

Using the idea of neutrosophic logic, Vasantha Kanadasamy and Florentin Samarandanche studied neutrosophic algebraic 
structures  by using an indeterminate element I in the algebraic structure and then combine (I) with each element of the structure 
with respect to corresponding binary operation. 

In deed neutrosophic sets is the extension of classical sets, neutrosophic groups, neutrosophic ring, neutrosophic fields, 
neutrosophic vector spaces … etc.   In the same way neutrosophic R −  module is the generalization of classical R −  module.

The indeterminate element I  is in order that if * is ordinary multiplication the multiplication of many (I) is (I)  itself and the inverse  
1I −  is not defined and hence is not found. If we have  *  as an ordinary addition, then the addition of many (I) is (I) itself. They call 

it neutrosophic element and the generated algebraic structure, is then termed as neutrosophic algebraic structure.
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In 1995, Florentin Smarandache introduced the “neutrosophic set theory” to process the indeterminate and  inconsistent informa-
tion which   found generally in real cases. 

In 2015 Salama introduced the concept of Neutrosophic Crisp set Theory  to portray any event by a triple crisp structure. Moreo-
ver the work of Salama et al. formed a starting point to construct new types of neutrosophic mathematics and computer sciences. 
Hence, Neutrosophic set theory turned out to be a generalization of both the classical and fuzzy counterparts.

Example:  Let ( ) 5 2x I I= +   be a real neutrosophic number which has 5 athe determinate part on  ( )x I   and 2I   the indeterminate 
part on ( )x I  .

Similarly let ( ) 1z I I= −  be a complex neutrosophic number which has 0 as the determinate part on z(I) and 1I−   the indeter-
minate part on z(I) .

If we have U  as an initial universe and if we take  PH as a subset of  U .  PH is defined as a neutrosophic set if it was an element      
p U∈  goes back to PH in the following form:

 i) TPH(P) is t % true in PH where  t T∈ .

Neutrosophic logic has a broad applications in science, medicine, economics, chemistry, law etc. Therefore, neutrosophic struc-
tures are very significant and a broad area of study. 

In addition to the introduction, this thesis contains in its second chapter suitable definitions and revision. Moreover , in the third 
chapter, the modules have been defined through the neutrosophic logic, some examples, theories, and proofs of its legitimacy and 
validity have been mentioned. Finally, in the fourth chapter, the homomorphisms has been studied with mentioning the theories 
and examples that support and confirm them.

If we have U as an initial universe and if we take FU as a non-empty set in U. A fuzzy set FU is defined as a set of arranged pairs   
{(f,μFU(f))}where f U∈  , the membership function [ ]: 0,1FU Uµ →   of FU  and ( ) [ ]0,1FU fµ ∈  is the degree of membership function of 
element f in fuzzy set FU  for any f U∈  [1].

Example: Consider the universe of discourse  { }3,5,6,7,9,10U =  . Then a fuzzy set   holding the idea of ‘large number’ can be ex-
plained as ( ) ( ) ( )( )( )( ){ }3,0 , 5,0.1 , 6,0.2 7,0.3 9,0.8 10,1A =   With the considered universe, the numbers 3  is not ‘large numbers’ ,so the 
membership degrees equal 0.  Numbers 5–9 partially belong to the idea  ‘large number’ with a membership degree of  0.1,0.2 0.3,0.5 
and  0.8. then  number 10  is the largest number with a full membership degree.

The neutrosophic numbers formed as ( ) | ,x I y zI y z= + ∈  or  C , and   y  is defined as the determinate part on  ( )x I   and    zI   is 
defined as the indeterminate part of ( )x I  , with ( )1 2 1 2z I z I z z I+ = +  . If both  y ,z are real numbers, then  ( )x I y zI= +   is defined as a 
neutrosophic real number. If y,z   or both are complex numbers, then  ( )x I y zI= +   is defined as a neutrosophic complex number [2].

Fuzzy Set 

Neutrosophic Numbers 

Neutrosophic Sets

( ) ( ) ( )( ), ,PH PH PHp T p I p F p U= ∈

 iii) FPH(P) is f % true in PH where f F∈ .

 ii) IPH(P) is i % true in PH where i I∈ .

The result t+i+f =1 refers that it is possible like in the situation of classical and fuzzy logics. Also the result t+i+f <1 refers that it is 
possible like in the situation of intuitionistic logic and  the result  t+i+f >1 refers that it is possible like in the situation of paracon-
sistent logic [3].

Example: The probability of a patient to pass his surgery  is “60% true” according to his doctor in the hospital, “25 or 30-35% false” 
according to his weak immunity, and “15 or 20%  indeterminate” due to equipment in the hospital.

The Complement Of a Neutrosophic Set: If we have U  as an initial universe and if we take PH as a neutrosophic subset of U , then 
the complement of PH  is indicated as  (PH)c and is defined as the following way:
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The Containment Of Two Neutrosophic Sets: If we have  U as an initial universe and if we take PH , SH  as two neutrosophic 

subsets of U , we say  PH is contained in SH  and indicated by PH SH⊆  , precisely when following holds:

(4)

( ) ( ) ( ) ( )c cPH PH
T k F k=

( ) ( ) { } ( ) ( )1c cPH PH
I k I k+= −

( ) ( ) ( ) ( )c cPH PH
F k T k=

( ) ( ) ( ) [ ], , , 0,1
PH PH PH

k U T k I k F k∀ ∈ ∈

SH PHT T≤

SH PHI I≤

SH PHF F≥

( ) ( ) ( ) [ ], , , 0,1
PH PH PH

k U T k I k F k∀ ∈ ∈

( ) ( ) ( ) [ ], , , 0,1
SH SH SH

k U T k I k F k∀ ∈ ∈ (4)

of these neutrosophic sets PH  and SH  will be a neutrosophic set PS , and we write  PS PH SH= ∪  , if and only if the conditions 
holds:

The Union Of Two Neutrosophic Sets: If we have U as an initial universe and  PH , SH  are two subsets of U , the union

( ) ( ) ( )( )max ,PS PH SHT k T k T k=

( ) ( ) ( )( )max ,PS PH SHI k I k I k=

( ) ( ) ( )( )min ,PS PH SHF k F k F k=

( ) ( ) ( ) [ ], , , 0,1
PH PH PH

k U T k I k F k∀ ∈ ∈

( ) ( ) ( ) [ ], , , 0,1
SH SH SH

k U T k I k F k∀ ∈ ∈ (4)
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where  [ ]1 2 3, , 0,1k k k ∈

The Intersection Of Two Neutrosophic Sets: If we have U  as an initial universe and if we take  PH , SH  as two subsets of U, the 
intersection of this neutrosophic sets PH and SH will be neutrosophic set PS  and we write  PS PH SH= ∩  , if and only if the 
conditions holds:

(4)

Example:  If we have  U as an initial universe and if we take PH , SH as two neutrosophic sets of U like the following :

The Difference of Two Neutrosophic Sets: If we have U as an initial universe and if we take PH , SH as two subsetsof  U , the dif-
ference of these neutrosophic sets   PH  and  SH  will be neutrosophic set 

( ) ( ) ( )( )min ,PS PH SHT k T k T k=

( ) ( ) ( )( )min ,SP PH SHI k I k I k=

( ) ( ) ( )( )max ,PS PH SHF k F k F k=

( ) ( ) ( ) [ ], , , 0,1
PH PH PH

k U T k I k F k∀ ∈ ∈

( ) ( ) ( ) [ ], , , 0,1
SH SH SH

k U T k I k F k∀ ∈ ∈

PS and we write PS PH SH= −  , if and only if the conditions holds:

( ) ( ) ( )( )min ,PS PH SHT k T k F k=

( ) ( ) ( )( )min ,1PS PH SHI k I k I k= −

( ) ( ) ( )( )min ,PS PH SHF k F k T k=

( ) ( ) ( ) [ ], , , 0,1
PH PH PH

k U T k I k F k∀ ∈ ∈

( ) ( ) ( ) [ ], , , 0,1
SH SH SH

k U T k I k F k∀ ∈ ∈ (4)

( ) ( ) ( ){ }1 2 30.3,0.5,0.6 , 0.3,0.2,0.4 , 0.8,0.7,0.2PH k k k=

( ) ( ) ( ){ }1 2 30.6,0.1,0.2 , 0.3,0.2,0.6 , 0.4,0.1,0.5SH k k k=

then:

( ) ( ) ( ) ( ){ }1 2 30.6,0.5,0.3 , 0.4,0.8,0.3 , 0.2,0.3,0.8cPH k k k=1)
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• we notice that PHG  is a commutative neutrosophic group if 1 2 2 1g g g g◊ = ◊   for all 1 2,g g PHG∈  .

If we have ( ),G ◊  as a group ,  ( )( ),PHG G I= ◊  is defined as  a neutrosophic group which  is formed by I and G with ◊  [5].

( ) ( ) ( ) ( ){ }1 2 30.2,0.9,0.6 , 0.6,0.8,0.3 , 0.5,0.9,0.4cSH k k k=

( ) ( ) ( ){ }1 2 30.6,0.5,0.2 , 0.3,0.2,0.4 , 0.8,0.7,0.2PH SH k k k∪ =

( ) ( ) ( ){ }1 2 30.3,0.1,0.2 , 0.3,0.2,0.6 , 0.4,0.1,0.5PH SH k k k∩ =

( ) ( ) ( ){ }1 2 30.2,0.5,0.6 , 0.3,0.2,0.3 , 0.5,0.7,0.2PH SH k k k− =

Neutrosophic Groups

2)

3)

4)

5)

Example 1: Under multiplication modulo 3 we  have  { } { }3 | 0 1,2Z =  is a group but { } { }3 | 0 1,2, , 2PHZ I I=   is not a group . 

Theorem: If we have  PHG as a neutrosophic group ,then  PHG always is not a group but it must have a group[5].

Example 2: The groups ( ) ( ) ( ), , , , ,PHZ PHQ PHR+ + +  and  ( ),PHC +  are neutrosophic groups with (+) [6].

Example 4: If we have { }1 2 3 1 2 3, , , , , , ,PHG e g g g I g I g I g I=    be a set where 2 2 2
1 2 3g g g e= = = and g1g2=g2g1=g3,g3g2=g2g3=g1 ,g1g3=g3g1=g2, 

then under multiplication PHG  is a commutative ,for {e, g1,  g2, g3}  we have a Klein      group [6].

Example 3: The groups { }{ }( ) { }{ }( )0 , , 0 ,PH Q PH R− −    and  { }{ }( )0 ,PH C −   are neutrosophic groups with ( ) .

Example 5: If we have the group { }: , , , 1, 4,7, , 2
m n

PHG m n k p I I
k p

  
= ∈  

  
  with matrix multiplication  modulo 3 , it easy to find

PHG is  a non-commutative neutrosophic group.

1)  SHG ≠ ∅  .
2)  SHG itself is a neutrosophic group. 
3)  SHG  must has a subset which is a group[5].

Neutrosophic Subgroups: If we have  PHG  as a neutrosophic group and if we take SHG as a  subset in PHG , we define SHG  as a 
neutrosophic subgroup precisely when:

Example: If we have The neutrosophic group { }1 2 3 1 2 3, , , , , , ,PHG e g g g I g I g I g I=  then the subgroups  { }1 2, , ,SHG e g I g I= ,  
{ }2 2, , ,NHG e g I g I=   and  { }3 3, , ,KHG e g I g I=   are neutrosophic subgroups of  PHG [6].

If we have  PHG  as a neutrosophic group, and we have an element  k PHG∈  which is  called a neutrosophic element  if is  t Z +∈   
it makes  kt = I  exist, and if t Z +∈   does not exist so  k is called a neutrosophic free element  [5].

If we have  PHG  as a neutrosophic group. The order of  PHG  is the cardinal number PHG   .  PHG is known as finite (resp. infinite) 
if  PHG   is finite  (resp. infinite) [5].

Example: If  we have  PHG = {1, 2, 5, I, 3I, 9I, 11I}  under multiplication modulo 10 ,then:
  • PHG  = 7
  • (I) ,(3I), (9I), (11I),   neutrosophic elements. 
  • 1,2,5  a free neutrosophic elements.

The Order Of Neutrosophic Group

The Neutrosophic Element And Free Element

Neutrosophic Rings

If we have  ( ), ,R +   as any ring  and  PH(R)  neutrosophic set formed by  R and  I  , we define the triple  ( ) ( )( ), ,PH R R I= +     as 
a neutrosophic ring [5].
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1)  ( )SH R ≠ ∅
2)  SH(R) itself is a neutrosophic ring.
3)  SH(R) must has a proper subset which is a ring [5].

Example:  The set SHE of even neutrosophic  integers is a commutative subring of integers neutrosophic ring PHZ.

If we have  PH(R) as a neutrosophic ring . A neutrosophic subring  SH(J) of PH(R) is said to be an  ideal of  PH(R)  Precisely 
when : ( )r PH R∀ ∈    ,  ( )j SH J∀ ∈   ⇒   ( ),rj jr SH J∈ . 

 • If  r s s r=   for any ( ),r s PH R∈   we notice that it is a commutative neutrosophic ring.
 • It is obvious ( )R PH R⊆ . 

Example: { }1 2 1 2| ,PHZ t t I t t Z= + ∈   is a ring known as the commutative neutrosophic ring of integers[5].

Example: If we have  ( ), ,R +   as a ring of real numbers ,then { }1 2 1 2| ,PHR r r I r r R= + ∈  is the neutrosophic ring known as the 
commutative neutrosophic ring of real numbers [5]. 

Example: If we have  ( ), ,Q +    as a  ring of rational ,then { }1 2 1 2| ,PHQ q q I q q Q= + ∈  is the ring known as the commutative 
neutrosophic ring of rational numbers [5].

Example: If we have ( ) 1 2
1 2 3 4

3 4

: , , ,
q q

PH R q q q q PHQ
q q

   = ∈  
   

, then PH(R)  is a non-commutative with matrix addition and multiplication.   

Neutrosophic Subrings 

Neutrosophic Ideals 

The Neutrosophic Ring of Characteristic 

Theorem: Every  neutrosophic ring PH(R) is a ring  R  [5].

If we have PH(R) as a neutrosophic ring and if we take  SH(R) as a subset in PH(R) , we define SH(R) as a neutrosophic subring 
precisely when: 

If we have PH(R) as a neutrosophic ring, and if there is at least  t   like  0,tr t Z += ∈   for all  ( )r PH R∈  , then  PH(R)  is said to 
have characteristic t  . It is possible only if t = 0 , then PH(R) is said to have  characteristic zero. .

Example:  We have the neutrosophic ring  ( )PH Q Q I= ∪  it's a neutrosophic ring of characteristic zero .

Example 3:  PH(C) is the neutrosophic field of  complex numbers which   formed by complex numbers  and I [5].

Example: SH(2Z) is a  neutrosophic ideal of PH(Z) .

Neutrosophic Fields

If we have  ( ), ,F +   as a field and if we take  PH(F)  as a set formed by F  with I  , we will define the form ( ) ( )( ), ,PH F F I= +    as a 
neutrosophic field [5].

Example 2:  PH(R) is the neutrosophic field of  real numbers which   formed by real numbers  and I [5].

 • For  Fα ∈  then I Iα α=  ,  0 PHF∈  is formed by 0 + 0I , 0I =0  and  1 PHF∈  is formed by 1+0I  in PHF .

Example 1:  PH(Q)  is the neutrosophic field of  rationale numbers which formed by rationale numbers  and I [5]. 

1)   ( )SP F ≠ ∅  .
2)  SP(F)  itself is a neutrosophic field. 
3)  SP(F) must has a subset  which is a field  [5]. 

Neutrosophic Subfields: If we have  PH(F)  as a neutrosophic field and if we take SP(F) as a subset of of  PH(F), we will define SP(F)  
as a neutrosophic subfield precisely when:

Example: PH(R)  is neutrosophic subfield of  PH(C) .

If we have ( ), ,V +    as a vector space over  F  and  if we take the set PH(V) which formed  by  V and I , we will define the form                           

Neutrosophic Vector Spaces 
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( )( ), ,PH V +   as a weak neutrosophic vector space (WNV) over F . However, if  F is a ( )PH F  then  ( )( ), ,PH V +    is defined as a strong 
neutrosophic vector space (SNV) over  PH(F) [3].

Example: We can look at PH(R)  through two views it's a (WNV) over Q . Moreover, it’s a (SNV)  over  PH(Q) [3].

3)  If ( ){ }, : ,m n PH M m a bI n k tI∈ = + = +   where a,b,k and t are elements  in M and ( ){ }:r R I r p qI∈ = +  where P and q  are scalars 
in R we define:  

i)   ( ) ( )m n a bI k tI+ = + + +     
          

        
( ) ( )a k b t I= + + +

ii)  ( )( )rm p qI a bI= + +
                

 ( )pa pb qa qb I= + + +

Similarly the form  ( ) ( )( ), ,.R RPH M M I= +   is known as weak  neutrosophic right R −  module (WNML)  over a ring R .

 • If R is PH(R) , then PH(MPHR) is defined as a strong neutrosophic right R −  module  (SNMR) over PH(R) .

1)  If we have R (PH(R)) as a commutative ring (neutrosophic ring),  then  every PH(RM)  is a PH(RM) (PH(PHRM) is a  PH(MPHR) ). 

1)  ( )SH V ≠ ∅  
2) (SHV) itself a weak neutrosophic vector space o ver F .   
3) (SHV) must has a subset which is a vector space [3].

Neutrosophic Subspace: If we have PH(V)  as a (WNV)  over  F  and if we take (SHV) as a subset of PH(V) , we will define (SHV) 
as a (WNV) subspace of  PH(V) precisely when:

 • Similarly for  (SNV)  subspace . 

Neutrosophic  Left   Module

Neutrosophic  Right R −  Module

Example 1: If we have  PH(V)   as (WNV) or (SNV) , then PH(V)   is a subspace of itself and  known as a trivial (WNV) or (SNV)  
subspace [3].

 • If  R  is PH(R), then PH(PHRM) is defined as a strong neutrosophic left R −  module (SNML) over PH(R) [7-12].

Example 2: If we have  ( ) ( ){ }:m n ij ijPH V PHM m m PH R×  = = ∈   as a (SNV) over PH(R) . And if we take the subset 
( ) ( ) ( ){ }: , 0m n ij ijSH V SHN n n PH R trace N×  = = ∈ =   ,then  (SHV) is a (SNV) subspace  of PH(V) [3].

If we have  ( ), ,R M +     as a left R −  module over a ring  R and we have  PH(RM) as a neutrosophic non-empty set formed by RM and 
I , then  the triple ( ) ( )( ), ,R RPH M M I= +    is defined as a weak neutrosophic left R −  module (WNML) over R . 

2)  in general neutrosophic R −  module ( strong ,weak ,lift and ,right ) denoted by PH(M)  or ( NM ). 

Notes :

Example 1: If we have PH(R) as a (NR) , and if we take PH(J) as a (NI) of PH(R) , then :

1) PH(R)  is a PH(M) .

2) PH(J) is a neutrosophic R −  module under the addition and multiplication of PH(R) .

3) PH(R)/ PH(J)  is a PH(M) . 

Example 2: We can look at PH(Rn)  through two views: the first is a (WNM) over a ring R , and the second  is a (SNM) over a neu-
trosophic ring PH(R)  . 

Example 3: We can look at  { }( ) : ( )m n ij ijPH M a a PH Q×  = ∈    through two views: the first is a (WNM) over a ring Q , and 
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the second is  a (SNM) over PH(Q) .

4) For ( )1 0I PH R+ ∈   we have:

           
( )( )1 1 0m I a bI= + +

           
21 1 0 0a bI aI bI= + + +

          0 0a bI a bI m= + + + = + =  So that , PH(M) is a R −  module.

Lemma : If we have PH(M)  as a neutrosophic R −  module over ring PH(R) and if we take       
( ), ,m a bI h k tI s e fI PH M= + = + = + ∈   , ( )p qI PH Rα = + ∈  then: 

1) m s s h m s+ = + ⇒ =    

2) 0 0α =

3) 0 0m =
    
4) ( ) ( ) ( )m m mα α α− = − = −                                                                                

Proof : If we have PH(M) as a (SNM)  because  it is ( )R PH R⊆  for every ring R , then  PH(M)  is a (WNM)  over R .

Theorem 4: If we have a (SNM)  then it is a (WNM).

Theorem: If we have PH(M)  as a commutative group then every weak (strong) neutrosophic R −  module is a  R −  module.

Proof: If we have  ( ),m a bI n k tI PH M= + = + ∈  where , , ,a b k t M∈  and  ( ),p qI r sI PH Rα β= + = + ∈    : , , ,p q r s R∈   then :                    

3) ( )mαβ   ( )( )( )( )p qI r sI a bI= + + +

 
( )pra prb psa psb qra qrb qsa qsb I= + + + + + + +

 ( )mα β=

1) ( )m nα +    ( )( )p qI a bI k tI= + + + +   
 

 ( )pa pk pb pt qa qb qk qt I= + + + + + + +
 

 m nα α= +

2) ( )mα β+    ( )( )p qI r sI a bI= + + + +

 
( )pa ra qp rb sa sb I= + + + + +

 

 m mα β= +

If we have PH(M) as a neutrosophic R −  module over a ring PH(R) and if we take SH(N) as a subset of  , we will define   as  a strong   
neutrosophic submodule precisely when:
1) ( )SH N ≠ ∅
2) SH(N) itself is a strong neutrosophic R −  module. 
3) SH(N) must has a proper subset which is a R −  module.  

Neutrosophic Submodule  
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• Similarly  for  weak neutrosophic submodule.

Theorem: If we have  PH(M) as a neutrosophic R −  module over a ring  PH(R) and if we take SH(N) as a subset of  , we will define     
as a strong   neutrosophic submodule precisely when:
1) ( )SH N ≠ ∅  
2) ( ) ( ), .n n SH N n n SH N′ ′∈ ⇒ + ∈
3) ( ) ( ) ( ), .n SH N PH R n SH Nα α∈ ∈ ⇒ ∈
4) SH(N) must has a proper subset which is a R −  module.

Since for i A∀ ∈  implies ( )SH N  is neutrosophic submodule of ( )PH M  .

Corollary  : If we have PH(M) as a (NM)  over a ring PH(R) and if we take SH(N) as a subset of  PH(M) ,then SH(N) is neutro-
sophic submodule of PH(M) precisely when:
1) ( )SH N ≠ ∅
2) ( ) ( ) ( ), , , .h t SH N r q PH R rh qt SH N∀ ∈ ∀ ∈ ⇒ + ∈
3) SH(N) must has a proper subset which is a R −  module.

Example 1: If we have PH(M) as a (NM) over a ring PH(R) ,then PH(M) is a neutrosophic submodule known as a trivial neutro-
sophic submodule.

Example  2: If we have ( ) { }( ) :m n ij ijPH M PH M a a R×  = = ∈   as a (NM) over R and 
 ( ) ( ){ }( ) : , 0m n ij ijSH N SH B b b R trace B×  = = ∈ =   , then SH(N) is a neutrosophic submodule of PH(M) .

Example 3: If we have PH(M) = PH(R3) as a (NM)  over a  PH(R) and if we take 
( ) ( ){ }, ,0 0 0 : , , ,SH N n x yI n z tI I PH M x y z t M′= = + = + = + ∈ ∈  , then SH(N) is a neutrosophic submodule of PH(M) .

Theorem: If we have PH(M) as a (NM)  over a ring PH(R) and if we take { }( )i i A
SH N

∈  as a set of all neutrosophic submodule of  
PH(M), then ( )SH N  is neutrosophic submodule  of PH(M) .

Proof:  It's clearly ( )SH N ≠ ∅  , then:

1)  If we have ( ),k t SH N∈   ⇒   ( )k t SH N− ∈ .

2)  If we have ( )h SH N∈  and ( )PH Rα ∈   ⇒   ( )h SH Nα ∈  .

Remark: If we have PH(M) as a (NM) over a ring PH(R), and  SH(A) , SH(B) as two different neutrosophic submodules of 
PH(M). In general, ( ) ( )SH A SH B∪  is not a neutrosophic submodule of PH(M) . However, if  ( ) ( )SH A SH B⊆  or ( ) ( )SH B SH A⊆   
true, then ( ) ( )SH A SH B∪  is a neutrosophic submodule of PH(M).

If we have  SH(A)  and SH(B)  as  two  neutrosophic submodules of PH(M)    

 over a neutrosophic ring PH(R) then:

1) We define the sum of  SH(A)  and  SH(B) by the set:

( ) ( ){ }1 2 1 2: ,n n n SH A n SH B+ ∈ ∈  and  refer by ( ) ( )SH A SH B+ .

2) PH(M) is said to be the direct sum of SH(A) and SH(B) precisely when:

( )m PH M∀ ∈   ⇒   1 2m n n= +    where  ( )1n SH A∈    and  ( )2n SH B∈ .

The Sum And Direct Sum Of Two Neutrosophic Submodule        

We denoted by  ( ) ( ) ( )PH M SH A SH B= ⊕ .

Example: If we have PH(M) = PH(R3)   as a (NM) over a ring PH(R) and if we take SH(A), SH(B) as two neutrosophic submodules  
of  PH(M) like  :

( ) ( ){ }1 1( ,0,0) :SH A n n PH R= ∈
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,a bI c dIα β= + = +  where , , ,a b c d R∈ .Now,

1 2, , 1, 2,3, 4i in N k N i∈ ∈ =

Then  ( ) ( ) ( )PH M SH A SH B= ⊕ .

Lemma: If we have SH(A) as a neutrosophic submodule of a neutrosophic R −  module PH(M) over neutrosophic ring  PH(R), 
then:
 
1) ( ) ( ) ( )SH A SH A SH A+ =

2) ( ) ( )n SH A PH A+ =   , ( )n SH A∀ ∈ .

Theorem: If we have SH(A) and SH(B) as  two  neutrosophic submodules of PH(M) over a neutrosophic ring PH(R) , then: 

1) ( ) ( )SH A SH B+   is a neutrosophic submodule of  PH(M).

2) SH(A) and SH(B) are contained in ( ) ( )SH A SH B+  .

Proof: 1) Clearly , A+B is a submodules contained in SH(A) + SH(B) .

Let  ( ) ( ),n k SH A SH B∈ +    and let  ( ), PH Rα β ∈   Then:

( ) ( )1 2 1 2n n n I k k I= + + +  , ( ) ( )3 4 3 4k n n I k k I= + + + where

Theorem: If we have  SH(A) and SH(B)  as  two  neutrosophic submodules of PH(M)  over a neutrosophic ring PH(R) , then 
( ) ( ) ( )PH M SH A SH B= ⊕  if and only if:

2)  Clear.

Accordingly, SH(A) +  SH(B) is a neutrosophic submodules of  PH(M) .

Theorem: If we have SH(A) and SH(B) as two neutrosophic submodules of PH(M) over a neutrosophic ring PH(R) , then
( ) ( ) ( ) ( ) ( ){ }1 2 1 2, : ,SH A SH B n n n SH A n SH B× = ∈ ∈  is a neutrosophic R −  module over a ring  PH(R)  where addition and 

multiplication are  defined  by the form:                    

1) ( ) ( ) ( )1 2 1 2 1 1 2 2, , ,m m n n m n m n+ = + +

2) ( ) ( )1 2 1 2, ,m m m mα α α=

1) PH(M) =  SH(A) +  SH(B)  

2) ( ) ( ) { }0SH A SH B∩ =    .

( ) ( )1 3 2 1 4 3 4n k an cn an bn cn dn dn Iα β+ = + + + + + +  

( ) ( )1 3 2 1 4 3 4ak ck ak bk ck dk dk I+ + + + + + +  

( ) ( )n k SH A SH Bα β⇒ + ∈ +

( ) ( ){ }2 3 1 2(0, , ) : ,SH B n n n n PH R= ∈

If we have SH(N) as a neutrosophic submodule of a neutrosophic R −  module PH(M)  over a ring PH(R) , the quotient PH(M)/ 
SH(N)  is defined as ( ) ( ){ }:n SH N n PH M+ ∈  which can be made a neutrosophic R −  module over a ring PH(R) . We can define the 
addition and multiplication as in the following way:

The Neutrosophic Quotient R −  module 
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 ( )( ) ( )( ) ( ) ( ), /a SH N b SH N PH M SH N∀ + + ∈  and ( )PH Rα∀ ∈    

The neutrosophic R −  module PH(M) / SH(N) over a PH(R) is defined as a neutrosophic quotient R −module.

Example: If we have PH(M) as a neutrosophic R −  module over a PH(R) , then PH(M) / PH(M) is a neutrosophic zero R −  module.

If we have PH(M) as a neutrosophic R −  module over a ring PH(R) . 

 ( )1 2, ,..., nm m m PH M∀ ∈ , then:

Neutrosophic Linear Combination , Neutrosophic Linearly Independent  Set  And  Neutrosophic Linearly 
Dependent  Set 

1) An element ( )m PH M∈  is known as a linear combination of  the { }1 2, ,..., nm m m  if { }1 2, ,..., nm m m  where ( )i PH Rα ∈  . 

( )( ) ( )( ) ( ) ( ) ,a SH N b SH N a b SH N+ + + = + +

( )( ) ( ).a SH N a SH Nα α+ = +

2) If 1 1 2 2 ... 0i nm m mα α α+ + + =  ⇒  1 2 ... 0iα α α= = = =    ( all αi are equal to zero), then, { }1 2, ,..., nm m m is defined as a lin-
early independent set.

3) { }1 2, ,...,m m m   are said to be linearly dependent if 1 1 2 2 ... 0i nm m mα α α+ + + =  implies that not all αi are equal to zero, 
then { }1 2, ,..., nm m m  is defined as a linearly dependent set.

Theorem: If we have PH(M) as a neutrosophic R −  module over a ring PH(R) and if we take SH(A) and SH(B) as two subsets of 
PH(M) as ( ) ( )SH A SH B⊆  , then:

If SH(A) is linearly dependent as a result SH(B) is linearly dependent.

Corollary: If we have  PH(M) as a neutrosophic R −  module over a ring  PH(R) and if we take  { }1 2, ,..., nm m m  as a linearly de-
pendent set in PH(M), then every subset of { }1 2, ,..., nm m m  will be linearly dependent set too.

Theorem: If we have PH(M) as a neutrosophic R −  module over a ring PH(R) and if we take SH(A) and SH(B) as two subsets of   
PH(M) as ( ) ( )SH A SH B⊆  , then:

If SH(A) is linearly independent as a result SH(B) is linearly independent.

Example:  If we have PH(M) as a neutrosophic R −  module over a ring PH(R), an element ( )8 4m I PH M= + ∈  is a linear combina-
tion of the elements 

 ( )1 21 2 , 2 3m I m I PH M= + = + ∈  since ( ) ( )8 4 16 1 2 12 2 3I I I+ = − + + +  .

Theorem: If we have PH(M) as a neutrosophic R −  module over a ring  PH(R) and if we take  ( )1 2, ,..., nm m m PH M∈  and ( )m PH M∈  
,then we can infinitely explained    as a linear combination of the { }1 2, ,..., nm m m  .

Proof: if we have 1 1 2 2 ... n nm m m mα α α= + + +   

where ( )1 1 1 2 2 2, , ,... n n nm a bI m a b I m a b I m a b I PH M= + = + = + = + ∈    

and  ( )1 1 1 2 2 2, ,..., n n nx y I x y I x y I PH Rα α α= + = + = + ∈

Then : ( )( ) ( )( ) ( )( )1 1 1 1 2 2 2 2 ... n n n na bI x y I a b I x y I a b I x y I a b I+ = + + + + + + + + +   from which we have 

1 1 2 2 ... n na x a x a x a+ + + =

1 1 1 1 1 1 2 2 2 2 ... n n n n n nb x a y b y b x a y b x a y b y b+ + + + + + + + =
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That means there are many solution of , : 1, 2,...,t tx y t n=  . It implies that the { }1 2, ,..., nm m m  can be infinitely combined to 
produce.

Notice : If we have PH(M) as a neutrosophic R −  module over a ring PH(R), and we have  0mα =  , this does not mean ( )0 PH Rα = ∈  
or ( )0m PH M= ∈   

all the times  it is possible to have 0m ≠  and 0α ≠  . For example , if ( ), , 0m x xI m PH M x= − ∈ ≠  and yIα =  where ( )PH Rα ∈  ,  
,x y R∈ we have ( ) 0m yI x xI yxI yxIα = + = − =  .

Theorem: If we have PH(M) as a neutrosophic R −  module over a ring 

PH(R)  and 1 1 1 2 2 2, ,..., n n nm x x I m x x I m x x I= − = − = −   ( )PH M∈  where 0ix R≠ ∈ , then { }1 2, ,..., nm m m  is a 
linearly dependent set.

Proof : If we have 1 1 1 2 2 2, ,..., n n np q I p q I p q Iα α α= + = + = +  ( )PH R∈  , then 1 1 2 2 ... 0n nm m mα α α+ + + =

  ⇒    ( )( ) ( )( ) ( )( )1 1 1 1 2 2 2 2 ... 0n n n np q I x x I p q I x x I p q I x x I+ + + + + + + + + =

  
⇒

  1 1 2 2 ... 0n nx p x p x p+ + + =

That means there are many  nontrivial solution of  : 1, 2,...,ip i n=  . As a result, { }1 2, ,..., nm m m  is a linearly dependent set.

Example: If we have PH(M) = PH(Rn) as a neutrosophic R −  module over a ring PH(R) .As an example of a linearly independent 

set in PH(M) we can take  the set   
( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

1,0,0,...,0 , 0,1,0,...,0 ,..., 0,0,...,1

, ,0,0,...,0 , 0, ,0,...,0 ,..., 0,0,...,
s

s s n

m m m

m I m I m I+ +

=  
 
  

   .

Theorem: If we have PH(M) as a neutrosophic R −  module over a ring PH(R) and if we take SH(N) as a nonempty subset of PH(M), 
we refer to the all linear combinations of SH(N) by the form ( )( )SH Nξ  , then: 

1) ( )( )SH Nξ  is a (SN) submodule  of PH(M) having  SH(N)  . 

2) If we have SH(A) as a (SN) submodule of PH(M) having SH(N) , then ( ) ( )( )SH N SH Aξ ⊂ . 

Proof:  1)  Clearly, because SH(N) is a nonempty set, as a result ( )( )SH Nξ  is nonempty . ( )m x yI SH N∀ = + ∈  , 1 0Iα = + , if we 
write 

Finally, ( ), ( )m n SH Nξ∀ ∈   , ( ) ( ), , ,i j i jm n SH N PH Rα β∈ ∈   then : 

( )( )1 0m I x yIα = + +

( )( )x yI SH Nξ= + ∈

( ) ( )( )SH N SH Nξ⇒ ⊂

⇒   ( )( )m n SH Nα β ξ+ ∈ For ( ), PH Rα β ∈  . Since SH(N) is a subset of  ( )( )SH Nξ  which is a submodule of PH(M) having  
SH(N), ( )( )SH Nξ   is a neutrosophic submodule  of PH(M) having SH(N) .

1 1 2 2

1 1 2 2

...
...

n n

n n

m m m m
n n n n

α α α
β β β

= + + +

= + + +

2)  As it is in the classical case and it is cancelled .

If we have PH(M) as a neutrosophic R −  module over a ring PH(R) , the neutrosophic submodule  ( )( )SH Nξ  of  theorem 3.5.5  is 
defined as the span of SH(N) and it is referred to as ( )spanSH N  . 

The Span Of Neutrosophic  module 
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If we have PH(M)  as a neutrosophic R −  module over a ring PH(R) and ( ) { }1 2, ,..., nSH N n n n=   as a linearly independent subset of  
PH(M) , the subset SH(N) is defined as a basis for PH(M)  precisely when SH(N) is a  spanPH(M) .

Example:  If we have PH(M)= PH(R3) as a neutrosophic R −  module over a Ring PH(R), and if we take the sub set: 

 ( ) ( ) ( ) ( ){ }1 2,0,0 , 0, ,0 ,..., 0,0,nSP N n I n I n I= = = =  we can found it as a basis for PH(M) . 

If we have PH(M) as a neutrosophic R −  module over a ring PH(R) , PH(M)  is said to be free neutrosophic  module when it has a 
basis.

for examples: 

 • PH(R) itself is a free neutrosophic R −  module, having a basis element 1PH(R)  . 
 • The zero neutrosophic R −  module 0 is a free neutrosophic R −  module with 
empty basis.
 • ( ) 3( )PH M PH=   is a free neutrosophic R −  module with basis SH(N) in Example 3.5.5 .

Theorem: If we have PH(M) as a neutrosophic R −  module over a ring PH(R), the basis of PH(M) over PH(R) are like the basis of  
M over a R.

Proof: Let { }1 2, ,..., nN n n n=  be any basis for M over R . We will proof N is a basis of PH(M):

1) We will show  N is a linearly independent set in PH(M) :  let 1 1 1k m Iα = + , 2 2 2k m Iα = +  ,…, n n nk m Iα = +  ( )PH R∈ ,if   
1 1 2 2 ... 0n nn n nα α α+ + + =  ⇒  

1 1 2 2 ... 0n nk n k n k n+ + + = , 
1 1 2 2 ... 0n nm n m n m n+ + + =

We have ki= 0  and  mj= 0  where , 0,1, 2,...,i j n=  ⇒  0, 1,2,...,i i nα = = . This explains  that N is a linearly independent set in 
PH(M). 

2) We will show N that spanPH(M): 

let n a bI= +  1 1 2 2 ... n nn n nα α α= + + +  .Then we have  
1 1 2 2 ... n na k n k n k n= + + +  , 

1 1 2 2 ... n nb m n m n m n= + + +  

,a b M∈  ⇒  n a bI= +  can be formed uniquely as a linear combination of { }1 2, ,..., nn n n .

The Basis Of Neutrosophic  module 

Free  Neutrosophic  module  

Theorem: If we have PH(M) as a (NM) over  ring PH(R) , then the basis of  strong (NM)  is contained in the basis of the weak 
(NM).

If we have PH(M) and PH(N) as two neutrosophic R −  modules over a ring PH(R), a mapping ( ) ( ): PH M PH Nϕ →  (PH(M) into 
PH(N)) is said to be a neutrosophic   R −  module homomorphism (NMH) , precisely when: 

1) ( ) ( ) ( )rm r m r m r mϕ ϕ ϕ′ ′ ′+ = +   for all ,m m M′∈  and ,r r R′∈ . 

2) ( )I Iϕ =  .

 • φ is said to be a neutrosophic R −  module monomorphism precisely when it is one-one. 
 • φ is said to be  a  neutrosophic R −  module epimorphism precisely when it is onto. 
 • φ  is said to be neutrosophic R −  module isomorphism precisely when it is  one-one and onto.
φ If   is a neutrosophic R −  module isomorphism, then the invers ( ) ( )1 : PH N PH Mϕ− →  is also neutrosophic R −  module isomor-
phism and we write ( ) ( )PH M PH N≅ .  

Neutrosophic  Module Homomorphism

Remarks: 

Example: The mapping ( ) ( )PH M PH N≅  defined by ( ) ( )0PH Nz m =  for all ( )m PH M∈  is a neutrosophic R −  module homomor-

phism since ( )I M I∈  but ( ) 0z I ≠  , called the zero  neutrosophic R −  module homomorphis.

 • If ( ) ( )PH M spanSH N=  ,  then we say SH(N) a span PH(M) .
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If we have PH(M) and PH(N) as two neutrosophic R −  modules over a ring PH(R), and if we take ( ) ( ): PH M PH Nϕ →  as  a neu-
trosophic  R −  module homomorphism, then:

 • The kernel of φ referred to as kerφ is defined by the set ( ) ( ){ }ker : 0m PH M mϕ ϕ= ∈ = .

 • The image of φ referred to as Im(φ)  is defined by the set ( ) ( ) ( ){Im :n PH N m nϕ ϕ= ∈ =  for ( )}m PH M∈ .

Example: If we have PH(M) and PH(N) as two neutrosophic R −  modules over a ring PH(M) and if we take ( ) ( ): PH M PH Nϕ →  
defined by the form ( )m PH M∀ ∈  : ( )m mϕ = , then:

1) φ is neutrosophic R −  module homomorphism. 
2) { }ker 0ϕ =  .
3) ( ) ( )Im PH Mϕ =

Theorem: If we have PH(M) and PH(N) as two neutrosophic  R −  modules over a ring PH(R) and if we take ( ) ( ): PH M PH Nϕ →  as 
a R −  neutrosophic  module homomorphism, then:                

Proof: 1) In order for ker φ to be a strong neutrosophic submodule of PH(M) it must contained I but ( ) 0Iϕ ≠  that means 
kerI ϕ∉  . As we have in the classical case ker φ is a submodule of M .

Theorem: If we have PH(M) as a neutrosophic R −  module over a ring PH(R), the basis of PH(M) over PH(R) are like the basis of  
M over a R  .

1) ker φ is not a neutrosophic submodule of PH(M) but a submodule of M. 
2) Im φ  is a  neutrosophic submodule of PH(M).

The  Kernel And The Image Of  Neutrosophic R −  Module Homomorphism

2) It is clear from the definition of Im φ .

Theorem: If we have PH(M) as a neutrosophic R −  module over a  ring  PH(MR) and  if we take SH(N) as a submodule of PH(M), 
then the mapping  ( ) ( ) ( ): /PH M PH M SH Nϕ →  defined by ( ) ( )m m SH Nϕ = +   for all ( )m PH M∈  is not a neutro-
sophic R −  module homomorphism.

Proof : Through the conditions of the neutrosophic R −  module homomorphism, it must be  ( )I Iϕ =  , but we have 
( ) ( ) ( )I I SH N SH N Iϕ = + = ≠  . As a result,   is not a neutrosophic R −  module homomorphism.

If we have PH(M) and PH(N) as two neutrosophic R −  modules over a ring PH(R) . If  ( ) ( ): PH M PH Nϕ →  is a neutrosophic R −  
module homomorphism and SH(A) be a submodule of PH(M), the neutrosophic R −  module homomorphism ( ) ( ): SH A PH Nσ →  
given by : ( ) ( ) ( ):a SH A a aσ ϕ∀ ∈ =    

We can notes:
1) σ  is a neutrosophic R −  module homomorphism.
2) ( )ker ker SH Aσ ϕ= ∩  .
3) ( )( )Im SH Aσ ϕ=  .

Proof : Through the conditions of the neutrosophic R −  module homomorphism, it must be ( )( )I Iϕ σ+ =  but we have
 ( )( ) ( ) ( ) 2I I I I I I Iϕ σ ϕ σ+ = + = + = ≠ and must be ( )( )I Iαϕ =  but we have ( )( ) ( )I I Iαϕ αϕ= ≠ for any ( )PH Rα ∈  . There-
fore, ( )ϕ σ+  and ( )αϕ  are not neutrosophic R −  module homomorphisms. 

Remark: If we have PH(M) and PH(N) as two neutrosophic R −  modules over a ring PH(R) and if we take ( ) ( ), : PH M PH Nσ ϕ →  
as two  neutrosophic R −module homomorphisms, then : ( )ϕ σ+  and ( )αϕ  are not neutrosophic R −  module homomorphisms.

The Restriction of Neutrosophic  Module Homomorphism

σ Is defined as a restriction of φ over SH(A) .

Note: As a result of the remarks above, the set of all neutrosophic  module
homomorphisms  from PH(M) into PH(N) is not neutrosophic R −  module 
homomorphisms over PH(R) that means we have a different case from the classical R −  module  
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If we have PH(M) , PH(N) and PH(A) as three neutrosophic R −  modules over a ring PH(R) and if ( ) ( ): PH M PH Nϕ →  , 
( ) ( ): PH N PH Aσ →  as two  (NMH), then the composition  ( ) ( ): PH M PH Aσ ϕ →  is defined as: 

( )m PH M∀ ∈   ⇒   ( ) ( )( )( ) .m mσ ϕ σ ϕ=

Note: ( ) ( ): PH M PH Aσ ϕ →  is also a neutrosophic R −  module homomorphism.

Proof: Through the conditions of the neutrosophic R −  module homomorphism, it must be ( )( )I Iσ ϕ = . If we take 
( ) ,m I PH M= ∈  then: 

 As a result σ ϕ  is a neutrosophic R −  module homomorphism.     

Corollary: If we have  , ,σ ϕ µ  as three neutrosophic R −  module homomorphisms, from PH(M) into PH(M) , then :

( ) ( )σ ϕ µ σ ϕ µ=   

Theorem: If we have PH(M) , PH(N) and PH(A) as three neutrosophic R −  modules over a ring PH(R) and if ( ) ( ): ,PH M PH Nϕ →  
( ) ( ): PH N PH Aσ →  as two neutrosophic  module homomorphisms, then:

1) If  σ ϕ  is one-one , then φ is one-one .
2) If  σ ϕ  is onto, then σ  nis onto.
3) If σ and φ are one-one, then  σ ϕ  is one-one.

The Composition Of Tow Neutrosophic R −  Module Homomorphisms

The Exact Sequence Of Neutrosophic R −  modules 

If we have PH(M) , PH(N) and PH(A) as three neutrosophic  R −  modules over a ring  PH(R) and if ( ) ( ): PH M PH Nϕ →  , 
( ) ( ): PH N PH Aσ →  as two  (NMH), then we say that the Sequence ( ) ( ) ( )PH M PH N PH Aϕ σ→ →  is an exact sequence,  pre-

cisely when  Im kerϕ σ=  .
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