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Summary
We propose a novel strategy to predict unknown data from a smaller sample size by using compressive sensing which is one of the 
information technology used in artificial intelligence. In this study, we applied the compressive sensing to an empirical sample of 
clinical trials comprising of two groups. Each group required the time data of 25 patients but the data of 12 more patients had to be 
acquired to satisfy alpha and beta errors. The unknown data were thus predicted using compressive sensing method. The calculation 
was repeated 1,000 times for each, and 1 million (=1,0002) log-rank tests between the two groups were carried out following, which 
a histogram of the P-values was obtained. The information on the distribution of predicted data obtained by repeated calculations 
reflects the probability of statistical significance. The method could thus increase efficiency by saving on human resources, financial 
resources, and time. As such, further studies examining the feasibility of compressive sensing in clinical trials are warranted.
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Introduction
Well-designed clinical trials are essential to proper and accurate inference through clear hypothesis testing. The end-result may 
lead to clinical practice changes when superior or unexpected outcomes are identified. The outcomes measures of such clinical 
trials are defined by pre-investigation statistical plans and procedures. One critically important factor in clinical trials is sample 
size and is determined by calculations according to α and β errors. When data are insufficient or ambiguous in a clinical trial, 
more data has to be acquired. However, if the lacking data can be reliably predicted, the clinical trial can proceed with increased 
efficiency while saving on human and financial resources and time. Specifically, if reliable methodology could be developed to 
better predict a likely future outcome, better decisions regarding further expansion vs triage could be made at an earlier times 
point in investigation, such after acquisition of phase II endpoints. 

There are some methods to estimate unknown complete data from known incomplete data. The method of full-information 
maximum likelihood would show the expectation values of the complete data that are under exponential distribution [1]. The 
expectation–maximization algorithm is a method to find maximum-likelihood estimates for model parameters when data are 
incomplete. This method does not always imply convergence [2]. Local principal components from a large-scale data set with 
missing values could be extracted [3]. The last observation carried forward is also a method of handling missing data. It is simply 
to impute, or fill in, values based on existing data, but it may underestimate the variances of the estimated result [4,5]. Baseline 
observation carried forward is a method to handle missing data from early treatment discontinuation. It may also underestimate 
the variances of the estimated result [6,7].
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Compressive sensing [8] is one of the information technologies employed to estimate unknown complete data from known in-
complete data in computer science and information engineering and is widely used in many fields, such as in astronomy [9,10]. 
In medicine, MRI [11,12] and CT imaging [13] have been investigated using this information technology. However, the compres-
sive sensing has not been applied to clinical study design yet. Here, we applied compressive sensing with L1 type regularization, a 
summation of absolute values of vector elements, which is often used in an artificial intelligence (AI) of computer science [8]. In 
this study, we introduced the compressive sensing with an original modification, which could obtain an outcome by predicting 
unknown data including the observed data, to clinical trials. We demonstrate an empirical case to propose the feasibility of using 
this technology for clinical trials.

We developed a compressive sensing algorithm so that the larger number of unknown data, vector X, which includes the smaller 
number of known data, vector Y, may be predicted. The L1 type regularization was added to enable allowance of no strict sparse-
ness of data [14-16].

Materials and Methods

Suppose m patients are required to fit a clinical trial, and only n patients (n<m) are enrolled. The data of the remaining patients 
who should be enrolled will be predicted as follows;
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where X=t(x1,..., xm), Y=t(y1,..., yn), ,m n∈ , m>n, 0x∀ ≥ , 0y∀ ≥ , (0,1), n mAS N S ×∀ ∈∈  and y X∀ ∈ . Suppose m>n, one 
already knows n patients’ data, vector Y, and one needs to know m patients’ data, vector X. Let vector X include vector Y as a novel 
idea. The elements in n×m matrix A consist of random real numbers of standard normal distribution. Then let the formula above 
calculate by varying matrix A and vector X. Then one obtains vector X as a predicted answer. But this is merely one candidate of 
the total possible results. Therefore, repeated calculations are required to obtain a list of m-dimensional vectors as the final format 
of this study. 

In this study, we present an empirical sample of phase II of surviving analysis (Figure 1). Because the data are time in the sample, 
our program lets the values of all data be greater than or equal to zero. The sample is supposed to be an incomplete situation of a 
two-arm survival clinical trial. Suppose that a simulated 25 patients have been enrolled in group A and B as known data, respec-
tively. In group A, uncensored and censored time data were {0.969, 0.655, 0.463, 0.330, 0.225, 0.154, 0.112, 0.076, 0.053, 0.038, 
0.026, 0.018, 0.012, 0.009, 0.006, 0.004, 0.002, 0.002, 0.001} and {0.212, 0.427, 0.622, 0.847, 1.056, 1.265}, respectively. In group B, 
uncensored and censored time data were {0.969, 0.504, 0.273, 0.147, 0.080, 0.042, 0.023, 0.012, 0.006, 0.003, 0.002}, {0.093, 0.177, 
0.271, 0.362, 0.447, 0.557, 0.619, 0.733, 0.801, 0.901, 1.01, 1.10, 1.160, 1.249}, respectively. The unit of time is arbitrary. A computer 
program generated randomly those 25 time data of which the maximum value is less than 1.350 in order to mimic conventional 
actual data. Sample size calculation with initial survival rates of the two groups revealed that 12 more patients were needed for each 
group to satisfy the prespecified alpha and beta error, 0.05 and 0.2, respectively. In group A, the number of uncensored data and 
censored known data are 19 and 6, respectively. Then the number of required censored data, which is proportional to the number 
of the known data, is 3 (=Round (6-(25+12)*6/25)), then the number of required censored data is 9 (=12-3). In group B, the

Figure 1: A sample of Kaplan-Meier survival curves of a clinical trial. There are two groups, each of which is 
consisted of 25 patients. The survival fractions are not significantly different (p=0.052) by log-rank test. But sample 
size is too small to fit. Twelve additional patients are necessary to satisfy both α error =0.05 and β error =0.20
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number of uncensored data and censored known data are 11 and 14, respectively. Then the number of required censored data and 
uncensored data are 5 and 7, respectively. There is no significant difference between the two groups for survival at the initial situa-
tion. The time data of 12 patients in a group were predicted from known data of 25 patients with the condition that the maximum 
value of 12 patients was less than twice of the maximum value of 25 patients. The censored and uncensored data were calculated 
independently and repeated 1,000 times. Then 1,000 patterns of survival data from 37 patients in a group were obtained.

A list of sets of predicted data was obtained from smaller number of samples by compressive sensing in the empirical sample. 

This procedure was then carried out for another group. One million (=1,0002) log-rank tests between the two groups were per-
formed and the histogram of the one million P-values of log-rank test were obtained. Then the probability of P<0.05 was obtained 
if the empirical study would be completely finished.

The differences between the known data and the corresponding elements in the predicted unknown data were investigated. The all 
of values of the known data were randomly set as between greater than or equal to 0 and less than or equal to 1. When the number 
of the known data and that of the adding data varied from 3 to 15 and from 1 to 18, respectively, the mean and the standard devia-
tion of the variances of the differences were calculated by 10 times for each combination.

Results

The 1,000 of surviving fraction curves for each group are shown (Figure 2). Then the histogram of P-values of one million of log-
rank tests between the two groups showed the probability of less than 0.05 was obtained as 98.8% (Figure 3). The median and aver-
age of P-values was 0.009 and 0.012, respectively. The first and the third quartile was 0.005 and 0.015, respectively.

Figure 2: Kaplan-Meier survival curves generated from predicted data. The total 37 patients’ data consisted of 
known 25 patients’ data and predicted 12 patients’ data were obtained by compressive sensing. The prediction 
was repeated 1,000 times for each group. Then the 1,000 of surviving fraction curves for each group are shown

Figure 3: The histogram of the P-values of 1 million log-rank tests of the two groups. The probability of P-values 
less than 0.05 is 98.8% in this study. The median and average of P-values was 0.009 and 0.012, respectively. This 
may suggest that by using the compressive sensing, this clinical trial that requires 37 patients in each group with 
only enrolled 25 patients would result in significant difference of the two groups in terms of survival analysis
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The variance profile of the differences between the known data and the unknown data is shown in Figure 4. The mean, standard 
deviation (SD), the maximum and the minimum number of the variances were 0.085, 0.091, 0.283 and 0.003, respectively. The left 
upper area, in which the number of the adding data is be greater than or equal to the number of the known data, is black which 
means the least variance. When the number of the adding data is the same as the number of the known data, the variance was 
0.039±0.009 (Mean±SD).

Our method using compressive sensing to predict unknown data including the observed data can be applied to various types of 
data including length, weight, volume and so on. Therefore, this method can also be widely applied to the development of drugs 
and other experiments, in addition to clinical trials. This method can be used not only for comparative studies but also non-
comparative studies that handle quantity.

A list of the predicted data as a completed enrolled clinical trial was obtained from a smaller number of known data. It is empha-
sized that the predicted data included the known data. The outcome of a clinical trial can thus be predicted using compressive 
sensing. In the empirical case, the survival fractions were not significantly different initially. However, this would be significantly 
different at the probability of 98.8% if the clinical trial were to continue to reach the complete sample size. Findings from this study 
would thus likely be significant, and the investigators could proceed with designing the protocol for the next step, such as a phase 
III trial.

Discussion

An unfavorable outcome predicted by this method would suggest for the investigators to abort the clinical trial immediately. The 
prediction can be repeatedly obtained at various points in the clinical trial when the information of a single patient is censored. 
The method using compressive sensing as well as the optimal two-stage design proposed by Simon [17,18] may be useful for clini-
cal trials. Simon’s method determines the adequate sample size by calculating the response probability of two groups with α and β 
errors, while our method used concrete data of every patient. Further studies to validate this method in Simon's two stage phase II 
trial is warranted and this would also be helpful in establishing futility benchmarks.

The results predicted by our method of compressive sensing does not present a confirmed outcome but rather a distribution of 
the probability of outcomes. Because the single outcome predicted by the method is only a candidate of unknown data, repeated 
calculations are required to obtain the outcome as a format of probability. When the probabilities of predicted outcomes of statis-
tical significance are more than 95% among all predicted outcomes, the actual outcome with sufficient data of the clinical study 
with insufficient data would likely to be statistically significant. On the other hand, if the probabilities were not more than 95%, 
the actual outcome would likely be not significant. The probability of an outcome becomes more reliable when a statistical test is 
repeated. The log-rank tests in this study were repeated one million times. We could use less but the minimum is dependent on the 
mean (or median) survival times of the 2 groups [19,20].

The variances of the differences between known and unknown data revealed the characteristic profile (Figure 4). The larger the 
number of adding data, the smaller the variance. The variance is quite small when the number of added data is larger than the 
number of the known data. When the number of the adding data is equal to the number of the known data, the variance was 
0.039±0.009 (Mean±SD). Therefore, if the number of the adding data is equal to the number of the known data, the variance will 
be likely to 3.9% of the maximum value of the known data statistically. The size of the variance that is less than 5% could be accept-
able clinically. That equality of the number of both the known data and the unknown data seems to be the boundary of the profile, 
and to be important to determine the proper adding number of the unknown data. In other words, the clinical data prediction 
with compressive sensing should be used so that the number of the added data might be greater than or equal to the number of the 
known data, which can be recognized as the left upper black area in Figure 4.

There are several nuances and issues to be resolved in future work. For instance, the specific conditions determined for the calcula-
tions are unique to each case. In this example of an empirical case, the maximum value of unknown data was defined as less than 
twice of the maximum value of known data. In addition, a normal distribution was applied to generate the matrix for survival 
data in this study. But this assumption has not been established and it might be better to select a different distribution such as the 
Weibull distribution, which is sometimes used as a parametric model of survival. Moreover, it is supposed that the uncensored 
event could follow the Weibull distribution and the censored event could occur by chance, which would imply that censored events 
may follow a normal distribution. Therefore, we may need to select the different distribution according to the feature of the data. 
Compressive sensing is able to reconstruct data especially when data are sparse. However, clinical data are not always sparse. The 
value of regularization would be determined not theoretically, but retrospectively. The fact that the investigator can define these 
conditions such as the maximum value of unknown data, the distribution model, the value of regularization and so on in every 
clinical trial implies that unpredictable extreme outcomes cannot be obtained. This remains the limitation of current AI. Currently, 
there is no standard method to complete lacking data in the clinical trial. Therefore, further validation to test the feasibility and 
applicability with real clinical trial should be conducted.
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Figure 4: The density plot with contour of the variance that represents differences between the known data 
of value with a range between greater than or equal to 0 and less than or equal to 1 and the corresponding 
elements in the predicted unknown data is shown. When the number of the known data is from 3 to 15 
and the number of the adding data is from 1 to 18, the variances were calculated by 10 times for each 
combination. It would be recommended that the number additional data should be greater than or equal to 
the number of the known data in order to reduce the variance, if possible

This method would be useful for clinical trials investigating rare diseases or if there is delay in the enrollment process. It would also 
be helpful in establishing futility benchmarks in phase II trials.

Conclusion
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