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Abstract
In a number of applications, one has access to high-dimensional time series data on several related subjects. Natural example comes 
from medical experiments: brain fMRI time series data for various groups of patients, be it controls or individuals with a specific 
mental disorder. In this work, we discuss the problem of their regularized joint estimation, introduced via Vector Autoregressive 
modeling (VAR) and leveraging a group lasso penalty on top of regular lasso, so as to increase statistical efficiency of estimates by 
borrowing strength across the subjects. We develop a modeling framework that allows for both group level and subject-specific effects 
for related subjects, using group lasso to estimate the former. Besides a simulation study, we also use our approach to tackle some of 
the known issues of effective connectivity estimation for resting-state fMRI data. In particular, a group-level descriptive analysis is 
conducted for brain inter-regional temporal effects of ADHD and control patients from ADHD-200 Global Competition, and the 
findings are compared to those in neuroscience literature.

Keywords: Attention deficit hyperactivity disorder; Group lasso; Regularized estimation; Resting-state fMRI; stability selection; Vector 
autoregression

Introduction
With recent advances in technology and growing amounts of available data (click-generated web browsing data, social networks, 
image and video data), interest in modeling and analysis of high-dimensional time series data is at its peak. Application areas 
include web recommender systems for log data [1], brain fMRI data [2], gene regulatory network inference [3], macroeconomic 
time series forecasting and structural analysis [4], to name a few. Their common characteristic is the large number of variable 
relationships being analyzed, relative to the time points available, thus leading to a high-dimensional problem. In many cases, 
the temporal dynamics of the data under consideration are well captured by autoregressive models, and hence the use of vector 
autoregressive models (VAR) enables the modeling of temporal dependencies between the variables. However, in the presence of a 
large number of parameters to estimate and only few time points, one needs to incorporate appropriate sparsity assumptions into 
the VAR modeling framework. To enforce sparsity, the most classic approach over the years has implemented lasso regularizing 
penalty [5], with [6] studying theoretical properties for regularized estimation of VAR models in particular.

In many applications, on top of the typical high-dimensional setting, one also has to perform estimation of time series across 
a moderate to large number of related subjects. As a motivating example, the area of medical research brings about a lot of 
experimental settings with multiple subjects being monitored over time, e.g., a collection of fMRI time series data for a group 
of patients. Looking at patients with a particular disease (Alzheimer’s, for example), we expect their brain connectivity (both 
functional and effective) to have a certain common structural pattern. But at the same time, due to natural variability and subject-
specific features, we usually witness certain individual patterns of temporal relationships for each patient as well. Classic approach 
to this problem of fMRI time series analysis is performing estimation for each patient separately, and subsequently accumulating 
the estimates for further group-level analysis.

This methodology has been applied to study brain activity for Alzheimer’s disease [7], Autism [8], Parkinson’s disease [9], among 
others. While providing tools for group-level analysis, this approach does not incorporate the prior knowledge of similarity among 
patients within the same experimental group, attributable to their shared mental condition, into the estimation procedure. The 
main novelty of this work is the development of joint modeling framework that would enforce the similarity assumption into the 
estimation procedure, while also leaving room for subject-specific effects estimation. It will allow us to increase effective sample 
size for common structure estimation by borrowing strength across the related time series. Additionally, the framework permits 
detection of most considerable individual effects of each subject (if present). The problem of joint estimation has received attention 
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in the literature recently, primarily focusing on the estimation of multiple graphical models. Proposed approaches leveraged 
various penalties that encouraged both sparsity and joint estimation of the parameters across the models, see the hierarchical 
penalty used in [10] or fused lasso penalty in [11]. In this work we will implement group lasso penalty due to its ability to clearly 
identify a common structure across multiple subjects, while letting the magnitudes of effects vary. After having detected the 
common structure, classic sparse lasso procedure will be applied to obtain subject-specific effect estimates.

The remainder of the paper is organized as follows: materials and methods section describes the joint modeling framework and in-
troduces the two-stage estimation procedure, results and discussion section demonstrates the performance of the joint estimation 
procedure for both simulated data and the restingstate fMRI case study, while the conclusion section contains concluding remarks 
and potential outline of future work.

Below is the detailed outline of the methodology used to carry out the joint estimation of VAR models sharing common structure.

To introduce the joint modeling framework, consider p-variable stationary time series Xt
k=(Xt 1k, . . . ,X

t
pk)', t =1, . . . ,T for k = 1,  . 

. . ,K related subjects. Then the VAR model with lag order D, or VAR(D), is given by

where Ad
k is p x p transition matrix that captures temporal effects of order d between the p variables for subject k, d=1, . . ., D , k =1, . 

. ., K. Simplifying assumption of diagonal error covariance matrix 2
k p

k
Iσ∑  will allow us to break problem (1) into p parallel problems 

of lower dimensions. In this work, we focus on the case of VAR model with lag order one (D = 1), so as to emphasize studying the 
properties of the joint estimation procedure rather than the aspects of lag order selection. The joint estimation approach starts with 
the assumption of common and individual component for each VAR model: Ad

k= Ad,C
k +Ad,I

k , d = 1, . . . ,D, k = 1, . . .,K. Afterwards, 
a two-stage estimation algorithm is proposed,consisting of group lasso optimization procedure to jointly estimate the common 
components {Ak

d,C} of K subjects during the first stage, followed by sparse lasso optimization procedure to estimate the individual 
components {Ak

d,I} on the second stage. Group lasso penalty groups the respective elements of the transition matrices across all K 
subjects and either retains or excludes the whole group from the model, which guarantees shared structure of resulting common 
component estimates. Meanwhile, the residuals from the common component signal are used as data to estimate the individual 
structures, respresenting subject-specific effects, via classic lasso procedure.

Recalling the system of VAR model equations from (1), we will proceed to introduce an equivalent system of standard regression 
equations. First, we drop k from the notation, k = 1, . . . ,K, and show the sequence of required algebraic transformations for a single 
VAR(D) model:

While the introduced joint estimation procedure can be used for numerous time series settings (econometric data for cities with 
shared manufacturing and economic features, gene expression data for matched subjects, sales data for similar stores), the primary 
intended application is resting-state fMRI time series data for studying the spontaneous brain temporal dynamics of various 
mental diseases. All the papers on group-level inference for mental disorders mentioned in the previous paragraph dealt with 
estimating the functional brain connectivity (inferring the correlations between brain region signals) rather than attempting to 
infer effective connectivity (the temporal influence across the brain regions). The restingstate data represents monotone within-
brain fluctuations and classical VAR serves well for capturing the dynamics of such data. Also, we assume each patient’s VAR 
model to be a perturbation of some common underlying VAR model for this experimental group (be it subjects with disease or 
healthy controls), the structure of which will be estimated by our joint procedure via group lasso. While there has been plenty of 
deserved critique against using VAR modeling for causal inference in brain neuroimaging studies [12,13], we attempt to alleviate 
some of those issues in our ADHD study. e.g., one of the six problems for causal inference from fMRI discussed in [13] concerned 
varying signal strength across the brain regions for multiple study participants, even though they all share a common abstract 
processing structure. In our framework, this issue is addressed directly via group lasso, which enforces this common structure 
while leaving room for variability of effect magnitudes. It is also worth mentioning that joint estimation approach via regularizing 
penalties had been used before for brain fMRI time series data [14,15], but only for functional connectivity estimation, while we 
apply it for inferring effective connectivity.

Materials and Methods

VAR Model Formulation

Standard Regression Formulation for VAR Models

Our independence assumption for errors fet {ε t
k, j=1, . . .,p}, implied by diagonal error covariance structure cov(ε t ) = σ 2Ip, t = 

D, . . .,T , allows us to represent temporal dynamics for each of the p variables in the form of the following system of equations:

(3)

( )1 1 2, ~ 0, ,  = ,. . ., , 1,. . ., ,t t D t D t t
k k k k k k k k pX A X A X N I t D T k Kε ε σ− −= + ⋅⋅⋅ + + = (1)

( )1 1 2, ~ 0, ,  = ,. . .,t t D t D t t
pX A X A X N I t D Tε ε σ− −= + ⋅⋅⋅ + + (2)

( ) ( )1 1 2

1
[ ,1] [ ,1] , ~ 0, , ,..., , 1,..., ,

p
t t D t D t t
j t l j j

l
X A j X A j X N t D T j pε ε σ− −

=

= + ⋅⋅⋅ + + = =∑
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where Ad[ j,l] is order-d temporal effect of lth variable on jth, l, j = 1; . . . , p. If we let Ad[ j, .] = (Ad[ j,1], . . . ,Ad[ j, p])T; d = 1, . . . ,D, 
then all T -1 equations from (3) can be represented in a compact matrix form for each variable  j respectively:

where Ak[ j, .] corresponds to temporal effects (of all D orders) that each of p variables has on jth variable for kth subject, k = 1, . . . ,K.

The key assumption we make is that of shared structure among the related subjects. In our model it is manifested in similar sparsity 
pattern across K transition matrices within the same group. Additionally, one has to account for the inevitable heterogeneity 
introduced by natural variability among subjects under consideration, leading to certain subject-specific effects. Both of these 
aspects are captured by breaking down each subject’s transition matrices into two parts:

where Ak
d,C  is the common component of order-d temporal effects for subject k, Ak

d,I  - individual component. Applying this 
representation to equations in (5) we get:

Assuming each of K related VAR model to be a perturbation of a common underlying VAR model, we enforce the common support 
constraint on {A1

C[j,.],. . .,AK
C[j,.] }. Moreover, sparsity assumption is imposed on the individual components {A1

I[j,.],. . .,AK
I[j,.]}  

to account for most important subject-specific effects. Lastly, orthogonality constraint ,C ,Id d
k kA A⊥  is introduced, implying that 

support intersection for Ak
d,C and Ak

d,I is an empty set, d = 1, . . . ,D, k = 1; . . .  ,K. In combination with shared support of common 
components, orthogonality guarantees identifiability of the individual component. The full set of
constraints for system (7) is described below:

1

1 1 -
1 1

1 -1 0
1 1

  . . .      . . .     . . . 
. . . . . .      . . .    . . .    . . .  . . .      . . .    . . .

 . . .   . . .        . . .    

j

T T T T D T D
j p p

D D D
j p p

X B
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− − −

−
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(4)

( )


( )






( )


 ( )2

11 1 1 1 1

B  [ ,.]  ,  ~ 0, , 1,...p
p p

j j j T
T D DT D D T D

X A j N I jε ε σ
− + ×− + × × − + ×

= + =

(5)

Common and Individual Component

(6)

(7)

(8)

Estimation Procedure: Two-Stage Approach
To enforce the set (8) of aforementioned constraints we will implement an estimation algorithm with each iteration consisting 
of two stages. During first stage, the common component is estimated via group lasso, while second stage uses the residuals of 
that common component estimate as data for sparse estimation of individual components. In order to guarantee orthogonality 
of resulting common and individual component estimates, we automatically eliminate the effects selected during first stage from 
consideration for second stage procedure. Consistent maximum likelihood estimators { }ˆ , 1,...,k k Kσ =  will be calculated as in [16] 
for the system of equations in (1), and subsequently plugged in for { }, 1,...,k k Kσ =  in (7). Let us set xj

C= (A1
C[ j, .], . . . ,AK

C[ j, .])T,

xj
I= (A1

I[ j, .], . . . ,AK
I[ j, .])T,  ( )1, ,,..., ,  1,..., ,j K jjX X X j p= = , 2 2 2 2 2 2

ˆ 1 1 2 2

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆDiag ,..., , ,...., ,..., ,...K K

T D T D T D

Dσ σ σ σ σ σ σ
− + − + − +

 
 =
 
 
  

, and K( 1) ( )B̂
pT D K D− + × , - block-diagonal

matrix,with kth block equal to ( 1) ( )pT D D
kB − + ×∈  from Section 5.2, k = 1, . . . ,K.

Now, reinstating k, k = 1, . . . ,K in the notation and using the standard regression representation (4) for all K VAR models under 
consideration, we get:

[ ]

[ ]

2
1, 1 1, 1, 1

2
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B A ,. , ~ (0, ),       1,...
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Two-Stage Estimation Algorithm (for arbitrary j, j = 1, . . . , p)

1. Initialize x̂ I
j with a okzero-vector, use maximum likelihood estimates ˆkσ  for , 1,...,k k Kσ = . 

3. First stage (continued): After calculating the solution path for (9) [17], pick the final common component estimate via Bayesian 
Information Criterion (BIC)

4. Second stage: Let x̂C
j

denote the estimate of xC
j from the first stage. To enforce the ˆ ˆx xC I

j j⊥  constraint, let ˜B - matrix containing 
columns of B corresponding to zero elements of x̂C

j  . With residuals of x̂C
j  as response, use the following convex lasso problem 

to estimate xJ
I

5. Second stage (continued): Similarly to Step 3, use BIC to pick the final estimate SPARSˆx̂ ( )I
j jλ .After selecting the tuning parameter 

value SPARSˆ
jλ , we complement the resulting vector SPARSˆx̂ ( )I

j jλ  with zeros to a full individual component estimate x̂ I
j .

6. If it is the second iteration (or higher): denote jˆ ˆ ˆx x xC I
j j= +  as the full estimate for current iteration, and x̂ pr

j  - full estimate from 
previous iteration; stop the algorithm if  

2 2
j 2

ˆ ˆx x 10pr
j

−− < . Otherwise, go back to Step 2 (First stage), using x̂ I
j  calculated during Step 

5.

As mentioned in the introduction, we will emphasize studying VAR models of order D=1 in order to focus on the properties of 
joint estimation procedure rather than on model order selection:

Evaluation of the Estimation Approach: We will evaluate our two-stage estimation approach by generating a group of p p×  
matrices {Ak=AC

K+AI
k,k=1, . . . ,K} such that  1 ...C C C

KA A A= = ≡  and I p p
kA ×∈  is an arbitrary sparse matrix, k = 1, . . . ,K. Denoting 

estimated matrix as ( ),
ˆ ˆA i j p p

a
×

=  and the true matrix as ( ),ˆA i j p p
a

×
= , we use the following metrics to evaluate performance of our 

estimation procedure:

2. First stage: To enforce the similarity constraint from (8) for common components within vector xj
C, use the following convex 

group lasso optimization criterion

(9)

( )2

21
2

j jˆ
2

ˆ ˆ ˆ( ) nlog Bx Bx ( ) log(n)df
j

I C
j j jBIC D X λσ

λ λ
− 

  = − − +  
 

   (10),

where n = K(T -D+1), ( )x̂C
j jλ  - estimate corresponding to value jλ  of the solution path, df

jλ
- degrees of freedom for estimate 

( )x̂C
j jλ , calculated as in [18].

(11)

Results and Discussion
Simulation Study

( )1 2, ~ 0, ,  1,...., ,  1,..., ,t t t t
k k k k k k pX A X N I t T k Kε ε σ−= + = = (12)

•  False Positive (FP) and True Negative (TN) rates:

•  False Negative (FN) and True Positive (TP) rates:

( )
( )

, ,1

,1

ˆ0, 0
,      =1- ,

0
i j i ji j p

i ji j p

I a a
FN TP FN

I a
≤ < ≤

≤ < ≤

≠ =
=

≠
∑
∑

•  Matthews Correlation Coefficient (MC, geometric mean of FP and FN):

( ) ( ) ( )2

21
2

ˆ 1x 212

ˆ ˆmin Bx Bx x ,..., x ,
C
j

p
I C G C C

j j j j j ji Ki
i

D X
σ

λ
−

=

 − − −  ∑  

( )2

21
2

ˆ 1x
2

ˆ ˆmin Bx Bx x ,
C
j

C C SPARS I
j j j j jD X

σ
λ

−
 − − + 
 

( )
( )

, ,1

,1

ˆ0, 0
,      =1- ,

0
i j i ji j p

i ji j p

I a a
FP TN FP

I a
≤ < ≤

′≤ < ≤

= ≠
=

=
∑
∑

( )( )( )( )
.TP TN FP FNMC

TP FP TP FN TN FP TN FN
× − ×

=
+ + + +
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We calculate all three of these measures for common component estimates Âk
C  and individual component estimates Âk

I
, k = 1, . . . 

.,K. Low values of FP and FN (near 0) and high values of MC (near 1) would indicate good performance. Additionally, an average 
number of iterations needed for convergence is provided for the two-stage estimation algorithm described above.

Simulation Results and Discussion:  Matrices (Ak = AC
k+AI

k; k = 1, . . . ,K) are generated with spectral radius of 0.4, with non-zero 
effects having magnitude of at least 0.2. This would guarantee stationarity of generated time series, separate noise from the signal, 
and likely replicate the features of fMRI data from ADHD study (no estimated effects had magnitude larger than 0.4). Data is 
generated with independent N(0,1) errors and signal-to-noise ratio of one (as in ADHD study). Multiple settings are considered 
by varying numbers p of variables per subject, T of observed time points, and K of subjects in a group. All the diagonals are 
generated to be non-zero, while the edge density of elements in the common component is set to 5% (of off-diagonal elements) 
for p = 20 and 2% for p = 30, 40. The edge density for individual component is set to 2-3% (of total number of matrix elements), 
implying a moderate level of heterogeneity. An example of generated transition matrices for the case of p = 20 can be found in the 
supplement. Cases of higher and lower spectral radius (meaning magnitude of non-zero effects) are considered in Appendix 9.1 
and the supplement. Hard threshold of 0.02 is applied to final estimates to alleviate noise, all results are averaged over 50 replicates. 
Table 1 below describes how increase in number T of observed time points per subject affects the performance.

N IterMC (ind)FN (ind)FP 
(ind)

MC 
(comm)

FN 
(comm)

FP 
(comm)T

p=20, K=10

2.16(1.31)0.16(0.05)0.94(0.03)0(0)0.82(0.17)0.15(0.22)0.05(0.02)50

2.17(1.05)0.25(0.07)0.88(0.06)0(0)0.89(0.06)0.05(0.08)0.06(0.02)80

2.12(0.85)0.24(0.1)0.87(0.08)0(0)0.9(0.01)0.01(0.02)0.09(0.02)120

p=30, K=10

2.15(1.08)0.23(0.05)0.89(0.04)0(0)0.95(0.03)0.01(0.03)0.04(0.01)80

2.13(0.97)0.24(0.05)0.89(0.04)0(0)0.94(0.01)0(0.01)0.06(0.01)120

2.06(0.51)0.19(0.04)0.93(0.03)0(0)0.93(0)0(0)0.07(0.01)150

p=40, K=10

2.22(1.45)0.24(0.06)0.88(0.06)0(0)0.95(0.01)0.01(0.01)0.05(0.01)120

2.13(0.95)0.2(0.05)0.92(0.04)0(0)0.94(0.01)0(0)0.06(0.01)150

2.09(0.93)0.14(0.06)0.95(0.04)0(0)0.93(0.01)0(0)0.07(0.01)200

Table 1: Two-stage procedure performance for increasing number T of time points, spectral radius of 0.4

We witness the tendency of denser common component estimates, which is manifested in decreasing false negative rate (e.g. 
from 15 to 1% for p=20) and increasing false positive rate (from 5 to 9% for p=20) within each setting. Meanwhile, the quality of 
individual component estimation is inconsistent, highly depending on the false positives of common component absorbing some 
of the subject-specific effects due to orthogonality assumption (see p = 40 setting). It shows that for a moderate signal strength 
(spectral radius of 0.4) the proposed method is more applicable for high-dimensional settings, with number T of time points not 
being much higher than the number p of variables per subject (making it a great tool for neuroimaging group studies). Another 
aspect is reflected in the Table 2 below - the effect of increasing the number K of subjects per group, which would allow us to 
borrow more strength across the group for estimation.

N IterMC (ind)FN (ind)FP 
(ind)

MC 
(comm)

FN 
(comm)

FP 
(comm)K

p=20, T=80

2.17(1.05)0.25(0.07)0.88(0.06)0(0)0.89(0.06)0.05(0.08)0.06(0.02)10

2.81(1.94)0.5(0.05)0.6(0.07)0(0)0.92(0.06)0.06(0.08)0.03(0.02)20

3.32(2.19)0.63(0.08)0.43(0.11)0(0)0.95(0.07)0.05(0.09)0.01(0.01)40

p=30, T=120

2.13(0.97)0.24(0.05)0.89(0.04)0(0)0.94(0.01)0(0.01)0.06(0.01)10

3.1(1.59)0.63(0.03)0.43(0.04)0(0)0.97(0)0(0)0.03(0)20

3.75(2.45)0.82(0.02)0.19(0.03)0(0)0.99(0)0(0)0.01(0)40

p=40, T=150

2.13(0.95)0.2(0.05)0.92(0.04)0(0)0.94(0.01)0(0)0.06(0.01)10

3.21(1.18)0.63(0.05)0.43(0.07)0(0)0.97(0)0(0)0.03(0.01)20

3.95(2.35)0.85(0.05)0.16(0.06)0(0)0.99(0)0(0)0.01(0.01)40
Table 2: Two-stage procedure performance for increasing subject group size K, spectral radius of 0.4
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With increase in the number of subjects per group we see a clear improvement in the common component estimation, which by 
the structure of our two-stage estimation approach leads to better estimates for individual effects as well, both of those aspects be-
ing reflected in respective MC values approaching
1. Results for higher spectral radius of 0.6 from Appendix and supplementary materials reaffirm the preference to increasing the 
number K of subjects over obtaining more time points T per subject. Meanwhile, in the the case of very small spectral radius (0.25, 
with minimum allowed effect magnitude of 0.1), we learn to emphasize collecting higher number T of time points per subject. Due 
to smaller signal from true underlying temporal effects being mixed up with the noise, longer time series is necessary for better 
temporal signal detection (see Appendix ). On the other hand, increasing the number of observed subjects prior to obtaining long 
enough time series may lead to bigger confusion between signal and noise (see supplementary materials).

To sum up, the simulation studies demonstrate the preference for increasing the number of subjects in a study for moderate to high 
temporal signal strength, as opposed to increasing the number of observed time points, which is preferred for smaller temporal 
effect magnitudes. As a side note, the estimation algorithm always converges in under 10 iterations, averaging about three itera-
tions per run.

Application to Resting-State Brain fMRI Data for ADHD Study

Primary intended application for the introduced framework of common structure is resting-state brain fMRI time series data in 
mental disorder studies. We look at experiments dealing with evaluation of inter-regional temporal effects within the brain for 
patients diagnosed with a certain mental disease (e.g., ADHD, Autism, etc), comparing those to a control group. We expect the 
patients from the diseased group (likewise controls) to have similar tendencies in brain temporal dynamics, while also displaying 
certain patient-specific features. The idea of shared structure had been used for fMRI data before [14,15], but it estimated contem-
poraneous dependence between brain regions (functional connectivity). Our estimation procedure attempts to describe temporal 
dynamics across those regions (effective connectivity).

Issues with Estimating Effective Connectivity of the Brain: Attempts at causal modeling of the cross-region relationships within 
the brain have been heavily scrutinized in the literature over the recent years. Even though there has been work done on dynamic 
causal modeling for estimating effective connectivity of the brain ([19, 20]), the more recent literature is quick to pinpoint various 
drawbacks for such approach. For example, a review paper on advances and pitfalls in resting-state fMRI analysis by [12] empha-
sizes the variations in haemodynamic delay across the regions which may introduce bias into any attempt of estimating causality. 
[13] proceeds to lay out six detailed reasons for caution when inferring causality for fMRI analysis, some of them being potential 
heterogeneity across different experimental sites and inability to capture causal relations due to neural activity processes occur-
ing quicker than the sampling rate of fMRI measurements. Nevertheless, we will attempt to alleviate some of the issues discussed 
above with out joint estimation approach. First of all, the group lasso directly addresses one of the issues in [13] by capturing the 
common abstract processing structure, such as which regions of the brain influence which other regions, while also allowing for 
varying strengths of those influences across the patients. As a reminder, it selects a particular relationship that is common for all 
the patients, but the exact effect magnitude can differ across the board. We also proceed to select the studies with same repeti-
tion times (TR) of fMRI measurements, otherwise risking to jointly estimate temporal effects of different lags. Additionally, the 
individual component accounts for subject-specific influences, e.g. sex or handedness. Lastly, in order to avoid the experiments 
yielding different regions of interest (ROI) for different subjects, we make sure to use a standard unified brain atlas for region as-
signment across all the patients.

Details of ADHD Study Setup: We will consider the resting-state brain fMRI time series data for 20 ADHD patients and 20 con-
trols from the ADHD-200 Global Competition provided by Python module nilearn. The sample was collected across five experi-
mental sites, three of which (NYU Child Study Center, Peking University and Radboud University for NeuroIMAGE study) shared 
a TR of 2.0s, with the other two (Oregon Health and Science University, Kennedy Krieger Institute) having a longer TR of 2.5s. 
As our model aims at inferring temporal effects within the brain, we proceed to exclude the last two studies from consideration in 
order to have consistent measurement repetition times across all the subjects. That leaves us with 12 ADHD subjects (all males; age 
mean ± SD = 13.85 ± 3.83) and 12 controls (all males; age mean ± SD = 13.72 ± 3.72), respectively. All sites reported the signal to 
noise ratio of one. The data pre-processing steps include corrections for delay in slice acquisition and motion, filtering to remove 
high frequencies, data standardization and detrending [21]. As mentioned in the discussion above, we proceed to parcellate the 
brain into 39 regions according to Multi-Subject Dictionary Learning atlas (MSDL), and following further the steps of [21] we 
summarize the signal over those regions via the mean of voxels weighted by gray matter probabilistic segmentation. Both the ana-
tomical locations of the regions and resulting extracted time series can be found on Figures 1 and 2, with details on scientific names 
for each of those brain regions contained in Supplementary Table 3 of Appendix. Moreover, Figure 3 demonstrates autocorrelation 
plots corresponding to time series extracted for one of the regions. Obvious spike at the first time lag of PACF (bottom right plot) 
serves as a strong AR(1) signature, which is present for vast majority of brain regions under consideration. This leads us to believe 
in VAR(1) model, emphasized in our simulation studies, being the appropriate tool for this data.

Considering the lack of literature on distributional characterization and asymptotical properties of estimates resulting from group 
lasso procedure, we defer to conducting descriptive analysis via stability selection. The concept of stability selection was introduced 
in [22], with its main idea being the use of bootstrap, and subsequent accumulation of the results over all bootstrapped samples for 
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Figure 1: Brain regions according to MSDL atlas (Supplementary Table 3 for region names)

Figure 2: Extracted time series for 39 brain regions for a single subject

Figure 3: Autocorrelation plots for a single region time series: top - time series plot, bottom left - autocorrelation plot (ACF), bottom right - partial autocorrelation 
plot (PACF)

further analysis. Subsampling leads to controlling the family-wise type I error rate in multiple testing for finite sample sizes, which 
is considerably more important for high-dimensional problems than an asymptotic statement with the number of obser
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further analysis. Subsampling leads to controlling the family-wise type I error rate in multiple testing for finite sample sizes, which 
is considerably more important for high-dimensional problems than an asymptotic statement with the number of obser

ADHD Study Results and Discussion: Supplementary Table 2 demonstrates both ADHD and control groups having strong auto-
correlation effects for each brain region (blue edges), which is to be expected. As it pertains to inter-regional temporal effects, we 
have a fair amount of those that are present in both groups (red edges) and ones that are specific to a certain group (green edges). 
The magnitudes of detected temporal effects were (mean ± SD) 0:23 ± 0:1 for autocorrelation effects, 0:07± 0:05 for inter-regional 
effects. Going from top to bottom, we start with auditory cortex network (top two regions) and witness left and right auditory 
cortex influencing each other for controls, while only working in one direction for ADHD patients. As described in [25], a lot of 
studies have shown auditory problems for ADHD-diagnosed patients, which may be reflected in the lack of communication within 
the auditory cortex network for their group on Supplementary Table 2. The default mode network (DMN) has been shown to ex-
perience irregularities for ADHD patients, which leads to disruptions in cognitive performance and resulting lapses of attention 
(one of the main symptoms of the disease). In particular, discovered the patterns of hyperactivation [26], while [27,28] pointed to 
deficits in its deactivation, which reduces sensitivity to stimulus. Our results partly reflect those ideas by showing more activity in 
DMN for ADHD group: on top of autocorrelation effects, it also contains a cross-region temporal effect of right DMN to medial 
prefrontal cortex.

Both ventral attention networks, right (RVAN, from right dorsolateral prefrontal down to right inferior temporal cortex) and 
left (LVAN, from left parietal down to left polar frontal lobe), demonstrate plenty of distinct activity patterns for two groups. As 
mentioned in [26], in ADHD studies for children they found regions of hypoactivation as well as hyperactivation in VAN. Hypo-
active regions manifest ADHD-related deficits in detecting and adjusting to environmental irregularities, while hyperactive ones 
underline distractability-one of the most crucial ADHD-symptoms. Meanwhile, in dorsal attention network (DAN, left and right 
intraparietal sulcus) we see better communication for controls, which reinforces results of [29,30], both pointing to abnormalities 
and lack of interactions in DAN as one of characteristics for ADHD patients. Additionally, emphasizes enhanced intraparietal 
sulcus activation for controls compared to ADHD patients [31]. As for the visual network (VN, primary visual cortex, right and 
left occipital complex), it was shown to be a discriminative area when comparing ADHD and control groups in [32], with [33] 
unveiling lower connectivity patterns in visual and occipital cortexes of ADHD subjects. In our case, we witness considerably more 
activity for the controls with a temporal cross-effect for right/left occipital complexes, and visual cortex influencing both of those 
regions as well.
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Figure  4: Directed graph of temporal effects for ADHD patients (top) and controls (bottom). Nodes on the left - brain regions 
at time t, right - at time t +1. Blue edge - region’s autocorrelation effect; red - inter-regional effect present for both patient groups; 
green - group-specific inter-regional effect

Salience network (SN, dorsal/ventral anterior cingulate cortex and anterior insular cortex) for controls demonstrates higher en-
dogenous activity (ventral anterior cingulate cortex affecting the other two regions), while also being heavily influenced by the 
cingulate insular network (CIN, cingulate, right and left insular cortex). According to [26], this network plays crucial role in such 
executive processes as decision-making and processing information from the external factors, deficiencies in which are very char-
acteristic for ADHD. Additionally, point to association between attention lapses with reduced pre-stimulus activity in anterior 
cingulate regions [27], reinforcing the lack of inter-regional activation of those regions of the SN for ADHD group (while showing 
more communcation and also being influenced by members of CIN network for controls) in our study. Left and right superior 
temporal sulcus regionsdisplay temporal cross-effect between them for the control group, while only showing a left to right effect
for ADHD, reaffirming the results of [26] who claim hypoactivity in temporal regions for ADHD patients. The last network show-
ing considerable activity is the aforementioned cingular insular network (CIN). Here, ADHD patients show distinct influence of 
cingulate cortex region on the right insular cortex, which agrees with hypothesis of cingulate cortex hyperactivation for ADHD 
subjects shown in [26]. In the meantime, controls have a temporal cross-effect between right and left insular cortexes, with both of 
the regions influencing the members of Salience Network.

Referring to the individual component estimates that resulted from our two-stage procedure described, there happened to be no 
consistent subject-specific effects for either of the study participants (non were picked in more than 20% of bootstrapped samples). 
This may be attributable in part to the lack of heterogeneity in our dataset (all the subjects being teenage boys), and the simulation 
study for a similar setting (p=40; T=150; K=10) showing propensity for false negatives in individual component estimates.

Conclusion
In this work we present a regularized joint estimation procedure for the setting with multiple related VAR models being perturba-
tions of a single underlying common VAR model. Even though the idea of joint estimation has been applied to precision matrices 
in [11], and regularized approach has been used to produce sparse estimates of VAR models in [6], they were yet to be combined 
into a joint procedure for estimating several homogeneous multivariate time series. Such approach allows one to borrow strength 
across multiple related subjects (time series) to produce more informed and, due to sparsity, more interpretable estimates. Primary 
intended application is brain fMRI time series for mental disorder studies with patients sharing the same mental status (disease 
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The most significant extension would be developing a hypothesis testing framework for the presented joint estimation procedure. 
There is not enough literature on distributional properties of estimates resulting from group lasso procedure, which is necessary 
for both testing the significance of temporal relationships in a single group, and comparing strength of temporal relationships 
across different groups. One of the papers addressing the issues of group-level inference for regularized estimation is Narayan et 
al. (2015), where it is being referred to as Population Post Selection Inference. It introduces a testing procedure for group-level 
effects that accounts for uncertainties introduced by both the regularization and inter-subject variability. Unfortunately, they don’t 
use joint estimation approach and group lasso penalty, estimating brain networks separately with classic lasso, and therefore not 
applying directly to our procedure. The other aspect in need of further studying is the joint estimation procedure’s ability to deal 
with VAR models of various lag orders, along with developing a lag order selection method.
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