
Appendix A

Nonparametric estimation of Hg(t)

Define Nig(t) = I(Xi ≥ t, δi = 1, G = g), i = 1, 2, ...n, g Є G, where G contains all the non-empty subsets of {1,2...k} and Yi(t) = I(Xi ≤ t).

For left censored data, we have

                              P(Xi Є (t − dt, t), δi = 1, G = g|Ft+) = hg(t)dt   if Xi ≤ t 
             = 0                       if Xi > t                    (A.1)

which leads to the fact that,

              E[dNig(t)|Ft+] = Yi(t)hg(t)dt                      (A.2)

where dNig(t) = I(Xi = t, δi = 1, Ji = j).        

If Y(t) > 0, then we have,
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              Mg (t) = Ng(t) − Ag(t)                       (A.3)
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     E[Ng(t)|Ft+] = E[Ag(t)|Ft+] = Ag(t)                      (A.4)

and

              E[dAg(s)|Fs+] = E[-I(X ≤ s)|Fs+] = dAg(s).                     (A.5)

From (A.3), (A.4), and (A.5), we have

             E[dMg(t)|Ft+] = E[dNg(t) − dAg(t)|Ft+] = 0.                     (A.6)
If E[dMg(t)|Ft+] = 0, then for all t ≤ s

             E[Mg(t)|Fs] - Mg(s) = E[Mg(t) − Mg(s)|Fs]                
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Thus (A.7) proves that Mg(t) is a martingale. From (A.3) we can write

                             dNg(t) = Y(t)hg(t)dt + dMg(t).                                  (A.8)
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If dMg(t) is noise, then so is               , because value of Y(t) at time t are known at time t+. We have( )
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Let C(t) = I(Y(t) > 0). Integrating both sides of (A.9) we get
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                                                                           (A.10)

Now from (A.9) the estimator of cumulative reversed hazard rate at time t with g observed as set of possible causes Hg(t) is obtained 
as
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