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Background: Along with the rapid development of genetic engineering technology and antibody engineering technology, humanized 
monoclonal antibody has been rapidly developed and gradually replaces the rat sourced monoclonal antibody. In this paper, we establish 
two new logarithmically completely monotonic functions involving the real-valued special functions according to two preferred 
interaction geometries, necessary and sufficient conditions are presented for one of them to be logarithmically completely monotonic. 
As a consequence, a sharp inequality involving the real-valued special functions is deduced to solve the problems of genetically 
engineered antibody.
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Introduction
Antibodies have been proven to be indispensable tools for biomedical applications. Different engineered antibodies have been 
developed for various purposes according to the amino acid sequence and/or spatial structure of protein (Figure 1). At present, it is 
still difficult to predict the optimal structure of antibodies. Topology knowledge can be important in antibody application as well as 
transformation. Theoretically, we can obtain desired antibodies by using protein/gene engineering technology. For instance, we can 
transform the complementarity determining region (CDR) to promote the affinity of the antibody to antigen. Similarly, we could 
also transform any domain of antibody to make it bind with any desired target. Under this vision, topology is a powerful tool to 
predict the structure of protein and it will serve to antibody engineering. Our present work tries to explain, and predict, if possible, 
the change of structure, size and function of antibodies as well as their fragments from a topological perspective.

Figure 1: Different antibody formats. a: different antibody or engineered antibodies; b: different shape of antibody

For ( )Re 0z > the classical Euler’s gamma functionΓ and psi (digamma) functionψ are defined by
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The classical Bernstein–Widder theorem [6, p. 160, Theorem 12a] states that a function f is completely monotonic on ( )0,∞  if and 
only if it is a Laplace transform of some nonnegative measure µ , that is,

respectively. The derivatives ( ) ( )n zψ for n∈ are known as polygamma functions. For ( )zψ [1], the following series representations 
are established :
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(1.4)

where 0.577215664901γ =   denotes the Euler’s constant.

We next recall that a function f is said to be completely monotonic on an intervalI , if f has derivatives of all orders on I which 
alternate successively in sign, that is,

( ) ( ) ( )1 0n nf x− ≥ (1.5)

for all x I∈ and for all 0n ≥ . If inequality (1.5) is strict for all x I∈ and all 0n ≥ , then f is said to be strictly completely 
monotonic [2-5].

( ) ( )
0

xtf x e d tµ
∞ −= ∫ (1.6)

where ( )tµ  is non-decreasing and the integral converges for x>0 .

We recall also that a positive function f is said to be logarithmically completely monotonic on an interval I if f has derivatives of all 
orders on I and

( ) ( ) ( )1 ln 0
nn f x− ≥   (1.7)

for all x I∈ and for all 1n ≥ . If inequality (1.7) is strict for all x I∈  and all 1n ≥ , then f is said to be strictly logarithmically 
completely monotonic [7-9].

The antibody structure will be changed when it binds certain targets (Figure 2a), i.e.: antigen, receptor. How to describe the changes 
in the view of topology? The following cases will explain it in detail.

Figure 2: Model of pH-dependent conformational change of FcRY and structures for the FcRY monomer and 
dimer. a: FcRY has an extended conformation at pH 8 (s*= 7.2 S) with no predicted interaction between the CysR-
FNII domains and the CTLDs. At pH 6 the CysR-FNII region folds back and binds to the CTLDs, resulting in a 
more compact conformation (s*= 7.9 S) that is able to bind IgY. b: Likely orientations of FcRY and FcRY–IgY on 
a membrane. The two FcRY monomers on the Right are shown in an orientation that would allow formation of a 
2:1 FcRY–IgY complex.
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The function (1.12) is logarithmically completely monotonic with respect to ( )1,x y∈ − − ∞  if and only if ( ){ }max 1,1 1yα ≥ +
; and if ( ){ }min 1,1 2 1yα ≤ + , the reciprocal of the function (1.12) is logarithmically completely monotonic with respect to 

( )1,x y∈ − − ∞
.

It was proved explicitly in and other articles that a logarithmically completely monotonic function must be completely monotonic [8].

In [10], G. D. Anderson et al. proved that the function

( ) ( )( )lng x x x xψ= − (1.8)

is strictly decreasing and strictly convex on ( )0,∞ , with two limits

( ) ( )
0

1lim 1,  lim
2x x

g x g x
→ →∞

= = (1.9)

From (1.9) and the monotonicity of g(x), then the double inequalities

( )1 1ln
2

x x
x x

ψ< − < (1.10)

holds for all  x>0.

In [11, Theorem 1], by using the well-known Binet’s formula, H. Alzer generalized the monotonicity and convexity of  g(x),  that is, 
the function

( ) ( )( )lng x x x xα
α ψ= − (1.11)

is strictly completely monotonic on ( )0,∞  if and only if 1α ≤ .

In [12], D. Kershaw and A. Laforgia proved that the function ( )1 1
x

xΓ +   is decreasing on ( )0,∞  and  ( )1 1
x

x xΓ +   is increasing on 
( )0,∞ . These are equivalent to the function ( ) 1

1
x

xΓ +    being increasing and ( ) 1
1

x
x xΓ +    being decreasing on  ( )0,∞ , respectively.

In [13,Theorem 5], F. Qi and Ch.-p. Chen generalized these functions. They obtained the fact that for all x>0 the function 
( ) 1
1

xrx xΓ +    is strictly increasing for 0r ≥  and strictly decreasing for 1r ≤ − , respectively.

After the papain digestion, the remained antibody functional part (usually the Fab domain), will be smaller and the structure is 
also changed (Fig. 1b). These changes can be revealed vividly using topology. Recently [14,Theorem 1], F. Qi, C.-F Wei and B.-N 
Guo established another excellent result, which states that for given ( )1,y∈ − ∞  and ( ),α ∈ −∞ ∞ , let
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(1.12)

Antibodies occur spontaneously gathering and forming dimer, polymer, which will influence their functions (Figure 2b). In 
antibody engineering practice, it urgently needs some measures to overcome this difficulty. From topology perspective, we could 
understand this issue as follow.

Stimulated by the above results, we put forward the function as follows: for given ( )0,y∈ ∞  and real number α , let the function   
( ), yf xα  be defined by

( ) ( )
( ) ( ) { }
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x y
f x x y

x yα α
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(1.13)

Our first result is contained in the following theorem.

.

.
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Respectively [15]. The Bernoulli numbers Bn are denoted by Bn= Bn(0), while the Euler 

Theorem 1:  For the function (1.13), then the following statements are true:
(1) for any given 1y ≥ , the function (1.13) is strictly logarithmically completely monotonic with respect to ( ) { }, \ 0x y∈ − ∞  if and 
only if  1α ≥ ;
(2) for any given  0<y<1, if ( )1 ye yα − −≥ , then the function (1.13) is strictly logarithmically completely monotonic with respect to 

( ) { }, \ 0x y∈ − ∞ ;
(3) for any given y>0 , the reciprocal of the function (1.13) is strictly logarithmically completely monotonic with respect to 

( ) { }, \ 0x y∈ − ∞  if and only if  0α ≤ .

Our second result is presented in the following theorem.

Theorem 2: For any given [ )1,y∈ ∞ , let the function ( )yh x be defined on ( )0,∞ by

( ) ( )
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∑ (1.14)

where γ  denotes the Euler’s constant, then the function (1.14) is strictly logarithmically completely monotonic with respect to x on 

( )0,∞ .

The following corollary can be derived from Theorems 2 immediately.

Corollary 1: For any given 1y ≥ , the inequality
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∑ (1.15)

holds for all  x>0.

Lemma
In order to prove our main results, we need the following lemmas.

It is well known that Bernoulli polynomials ( )kB x and Euler polynomials ( )kE x  are defined by
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numbers En are defined by En = 2nEn(1/2).

In [16], the following summation formula is given:
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for any nonnegative integer k, which implies
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In particular, it is known that for all n∈we have
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And the first few nonzero values are

( )2 1 2 20,  1 n
n n nE E E+ = = −

(2.6)

0 1 2 4

0 2 4

1 1 11,  ,  ,  
2 6 30

1,  1,  5

B B B B

E E E

= = − = = −

= = − =

(see [17, p.804, Chapter23]).

The Bernoulli and Euler numbers and polynomials are generalized ([18-21]).

Lemma 1: For real number x > 0 and natural number m[22, 23], then
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(2.9)

(2.10)

Remark 1:  1 2 3 4,  ,  ,  θ θ θ θ  only depend on natural number m.

Lemma 2: For real number x > 0 and natural number ([24, p. 107, Lemma 3]),
we have
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Lemma 3: (see [1, 17]) For real number x > 0 and natural number , we have
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Lemma 4: Let the sequence of functions  for ( )nu x  , for n∈  be defined on [ )0,∞  by
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Lemma 5: For 0 1a< ≤  and real number b, let the function ( ),a bQ x  be defined by

for all [ ],x a b∈ . It is easy to check that the series 
2

2
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2
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∑  converges, which and
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For any interval [ ] [ ), 0,a b ⊂ ∞ , we have
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Hence the series ( )
1

n
n

u x
∞

=
∑  is differentiable on [ )0,∞  and the identity (2.17) holds for 0x ≥ .

The lemma is proved.
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ax b a
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for all ,bx
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 and n=2,3,---.

Proof: Taking the logarithm of ( ),a bQ x  yields

( ) ( ) ( ),ln ln lna bQ x x ax b ax b= + − Γ + (2.21)

and differentiating ( ),ln a bQ x , then

( )( ) ( ) ( )'
,ln ln 1a b

bQ x ax b a ax b
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ψ= + − + − +
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(2.22)

.

.

.

.

,



7       Journal of  Antibiotics Research   

Annex Publishers | www.annexpublishers.com                    
 
                             Volume 2 | Issue 1

therefore p(t) is strictly increasing on ( )0,∞ , and then ( ) ( )0 0p t p> = .

For given integer 2n ≥ , we get

( )( )( ) ( ) ( )
( )

( ) ( ) ( ) ( )
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11 1
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, 1

1 2 ! 1 1 !
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a b n n
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(2.23),

and, by the identities (2.13) and (2.14), (2.23) can be written as
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Let ( ) ( )( )1 1 tp t bt e at−= + − −  and ( ) ( )( )1 1 tq t t e t−= + − − . It is easy to check that

( ) ( )' 0,  0, ,tq t te t−= > ∈ ∞ (2.25)

therefore q(t) is strictly increasing on ( )0,∞ , and then ( ) ( )0 0q t q> = .

The following two cases will complete the proof of Lemma 5.

Case 1: If 0 1a b< ≤ ≤ , then since q(t) > 0 for t > 0, we have

( )( ) ( )( )1 1 1 1t tat t t e bt e− −≤ < + − ≤ + − (2.26)

which implies ( )( )1 1 tat bt e−< + − , and then p(t) > 0 for all t > 0.

Case 2: If 0 1a b< ≤ ≤ , then we get

( ) ( )' 1 0t tp t b a e bt b bte− −= − + + − ≥ > ,, ( )0,t∈ ∞ (2.27)

From (2.24), we know that the inequality (2.20) holds for ( ),x b a∈ − ∞  and integer .

The lemma is proved.  

Proof of Theorems
Proof of Theorem 1: For 0x ≠  and natural number n, taking the logarithmically
differential into consideration yields
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where ( ) ( )1 x yψ − +  and ( ) ( )0 x yψ +  stand for ( )ln x yΓ +  and ( )x yψ +  respectively.

Furthermore, differentiating ( ) ( )1
,

nn
yx f xα
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(3.2)

Making use of (2.11) and (2.13) shows that for all n∈  and any fixed y >0, the double inequality

.
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( )
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holds for all ( ) { }, \ 0x y∈ − ∞  and  ( ),α ∈ −∞ ∞ .

For any fixed ( )0,y∈ ∞ , let u(t) and v(t)  be defined on ( ),−∞ ∞  by

( ) 11
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ytu t e t−  = + 
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From (3.3) and (3.8)-(3.9), it is easy to see that
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for all n∈  and all ( ) { }, \ 0x y∈ − ∞ .
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On the one hand, if ( )0,x∈ ∞ , then the inequalities (3.10) can be equivalently
changed into

for  k∈ .

for all n∈  and any given ( )0,y∈ ∞ . As a result,

Therefore, (3.14) and (3.15) imply 
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e y y
α

α
α

α

+

− −

< ≤ >
  > ≥ ≥ 
> ≥ < <

(3.11)

and

( ) ( ){ }
( )

'2 12
,

1

0, if 0 for fixed 0
0, if 1 for fixed 1

0, if for fixed 0 1

kk
y

y

y
x f x y

e y y
α

α
α

α

−

− −

> ≤ >
  < ≥ ≥ 
< ≥ < <

(3.12)

From (3.1), then simple computation shows that

( ) ( )1
,0

lim 0
nn

yx
x f xα

+

→
  = 

(3.13)

( ) ( )

( )

22 1
,

1

0, if 0 for fixed 0
0, if 1 for fixed 1

0, if for fixed 0 1

kk
y

y

y
x f x y

e y y
α

α
α

α

+

− −

< ≤ >
  > ≥ ≥ 
> ≥ < <

(3.14)

and

( ) ( )

( )

2 12
,

1

0, if 0 for fixed 0
0, if 1 for fixed 1

0, if for fixed 0 1

kk
y

y

y
x f x y

e y y
α

α
α

α

−

− −

> ≤ >
  < ≥ ≥ 
< ≥ < <

(3.15)

for all k∈  and all x > 0.

( ) ( ) ( )

( )
,

1

0, if 0 for fixed 0
1 0, if 1 for fixed 1

0, if for fixed 0 1

nn
y

y

y
f x y

e y y
α

α
α

α − −

< ≤ >
 − > ≥ ≥ 
> ≥ < <

(3.16)

for all n∈  and all x > 0.

Hence, if either ( )1 ye yα − −≥  for given 0 < y < 1 or   for given 1y ≥ , the function (1.13) is strictly logarithmically completely 
monotonic with respect to x on

 ( )0,∞ , and if 0α ≤  for given y > 0, so is the reciprocal of the function (1.13).

On the other hand, if ( ),0x y∈ −  for any given y > 0, then (3.10) implies

( ) ( ){ }
( )

'
1

,

1

0, if 0 for fixed 0
0, if 1 for fixed 1

0, if for fixed 0 1

nn
y

y

y
x f x y

e y y
α

α
α

α

+

− −

< ≤ >
  > ≥ ≥ 
> ≥ < <

(3.17)

for all n∈ .
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In view of (3.13), we can conclude that

( ) ( )

( )

1
,

1

0, if 0 for fixed 0
0, if 1 for fixed 1

0, if for fixed 0 1

nn
y

y

y
x f x y

e y y
α

α
α

α

+

− −

> ≤ >
  < ≥ ≥ 
< ≥ < <

(3.18)

for n∈ . It is obvious that (3.18) is equivalent to that (3.14) and (3.15) hold for any given y > 0 and ( ),0x y∈ − . Therefore, it is 
easy to prove similarly that (3.16) is also valid on ( ),0x y∈ − for any given y > 0 and all n∈ .

The amino acid of antibody/protein possesses different preferences. Thus we can conduct site-directed mutation to promote the 
affinity and/or hydrophilic with the prediction of topology. For example, bovine antibodies have an unusual structure comprising 
a β-strand ‘stalk’ domain and a disulphide-bonded ‘knob’ domain in CDR3 (Figure 3). Attempts have been made to utilize such 
amino acid preference for antibody drug development.

Figure 3: Unique Structural Domain in Bovine IgG antibodies and application

Consequently, the function (1.13) is the same logarithmically completely monotonicity on (-y, 0) as on ( )0,∞ , that is, if either 
( )1 ye yα − −≥  for given 0 < y < 1 or 1α ≥  for given 1y ≥ , the function (1.13) is strictly logarithmically completely monotonic 

with respect to x on  (-y, 0), and if 0α ≤  for given y > 0, so is the reciprocal of the function (1.13).

Conversely, we assume that the reciprocal of the function (1.13) is strictly logarithmically completely monotonic on ( ) { }, \ 0y− ∞  
for any given y > 0. Then we have for any given y > 0 and all x > 0

( ) ( ) ( ) ( )'
, 2

ln ln
0y

x y x x y y
f x

x xα

ψ αΓ + − + − Γ
= + < (3.19)

which implies

( ) ( ) ( )ln lnx y x x y y
x

ψ
α

Γ + − + − Γ
< −

(3.21)

(3.20)

,

.

By L’Hˆospital’s rule, we have

( ) ( ) ( )
0

ln ln
lim 0
x

x y x x y y
x
ψ

→

− Γ + + + + Γ
=
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By utilizing (2.7) and (2.8), it is easy to see that

( ) ( ) ( )ln ln
lim 1
x

x y x x y y
x
ψ

→∞

− Γ + + + + Γ
= (3.22)

for any given y > 0. In fact, it is not difficult to show that the necessary condition for the function (1.13) to be strictly logarithmically 
completely monotonic is 1α ≥ .

The proof of Theorem 1 is completed. 

Proof of Theorem 2: Taking the logarithm of ( )yh x  gives

( ) ( )
( )

2
22

2

1

1ln ln ln 2 ln 1 2 .
2

x n
x

y
n

x y x xh x x x x x
x y n n

γ
∞

=

 +    = − + − − + + + −     Γ +     
∑ (3.23)

Let

(3.24)( ) ( )
( )

ln ,
xx y

x
x y

µ
+

=
Γ +

( ) 2
22

2

1

1ln 2 ln 1 2 ,
2

n
x

n

x xx x x x x
n n

ω γ
∞

=

    = − + − − + + + −         
∑ (3.25)

then

( ) ( ) ( )ln yh x x xµ ω= + (3.26)

In view of Lemma 4, straightforward calculation gives

( )( ) ( ) ( )

( ) ( )

'

1

' '

2 2ln ln 2 ln 2 2

.

y
n

x x xh x x y x y t t x
x y n n x

x x

ψ γ

µ ω

∞

=

 = + + − + − + + − − + + 
= +

∑
(3.27)

By virtue of (1.2), the identity (3.27) is equivalent to

( )( ) ( ) ( ) ( )( )

( ) ( )

'

' '

ln ln 2 ln

.

y
xh x x y x y x x x

x y
x x

ψ ψ

µ ω

= + + − + − −
+

= +
(3.28)

for any given y > 0. By virtue of (3.20) and (3.21), we conclude that the necessary condition for the reciprocal of the function (1.13) 
to be strictly logarithmically completely monotonic is 0α ≤ .

If the function (1.13) is logarithmically completely monotonic on ( ) { }, \ 0y− ∞

for any given y > 0, then the inequality (3.19) and (3.20) are reversed for any given y > 0 and all  x > 0.

By Lemma 5, we know that ( )' xµ  is strictly increasing on ( )0,∞ , which and (1.10) imply the limit of ( )' xµ  equals 1 as x →∞
, therefore

( )' 1xµ < (3.29)

holds for all x > 0.

We know that g(x) is strictly completely monotonic on ( )0,∞ , where g(x) is defined by (1.8), hence for given integer 0n ≥ , the 
inequality
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( )'2 1xω− < < − (3.31)

for all x > 0.

From (3.29) and (3.31), we conclude that

( )( ) ( ) ( )' ' 'ln 0yh x x xµ ω= + < (3.32)

for all x > 0. Utilizing Lemma 5 and (3.30), for given integer 2n ≥ , it is easy to see that

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )( )( )1 ln 1 1 0
n n nn n n

yh x x xµ ω− = − + − > (3.33)

for all x > 0.

Theorem 2 follows from (3.32) and (3.33).

Thus the proof of Theorem 2 is completed.  

Conclusion
In conclusion, we establish two new logarithmically completely monotonic functions involving the real-valued special functions 
according to two preferred interaction geometries, and a sharp inequality involving the real-valued special functions is deduced to 
solve the problems of genetically engineering antibodies. It is necessary to address, many other aspects (such as thermal condition, 
alkalinity or acidity, adhesion of antibodies) are also playing key roles in antibodies functioning, which could be also understood 
from bio-mathematical perspective, and such knowledge will be in return useful for biomedical application of antibodies as well 
as proteins [25-30].
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( ) ( )( )( )1 '1 0
nn xω+− > (3.30)

holds for all x > 0.

And then by using inequality (1.9) and (1.10), we get
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